Выбрать главу

Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффи­циент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство.

Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет по­ловину площади отверстия.

Чтобы получить скорость, мы использовали закон сохране­ния энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходя­щей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое дав­ление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно урав­новешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отвер­стия, наподобие показанного на фиг. 40.7, ибо увеличение ско­рости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.

Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.

Фиг. 40.9. Там, где скорость повышается, давление пони­жается.

Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко про­демонстрировать этот эффект, измеряя давление в разных местах с различным сече­нием с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действи­тельно оказывается меньше, чем в широких. Если после суже­ния площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вы­зывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1 чтобы через сужение могло пройти то же количе­ство воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ус­корению, и есть перепад дав­ления.

Этот результат можно про­верить с помощью еще одного простого опыта. Представьте, что у нас есть резервуар с водой и выходной трубой, которая выбрасывает струю воды вверх (фиг. 40.10).

Фиг. 40.10. Доказательство того что v не равно Ц2gh,

Если бы скорость истечения была в точности равна Ц2gh, то выходящая вода должна была бы подняться вплоть до уровня воды в резервуаре. Однако на опыте она начинает падать несколько ниже его. Наше приближение оказывается очень грубым; вязкое трение, которое мы не учли в нашей формуле для сохранения энергии, приводит к потере энергии. Пытались ли вы когда-нибудь, дунув между двумя слип­шимися листками бумаги, оторвать их друг от друга? Попытай­тесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в раз­ные стороны, соединятся.

§ 4. Циркуляция

В начале предыдущего параграфа мы видели, что если у нас есть безвихревая несжимаемая жидкость, то поток удов­летворяет следующим двум уравнениям:

С·v=0, СXv=0. (40.19)

Эти уравнения аналогичны уравнениям электростатики или магнитостатики в пустом пространстве. При отсутствии зарядов дивергенция электрического поля равна нулю, а ротор электро­статического поля всегда равен нулю. Ротор магнитного поля равен нулю при отсутствии токов, а дивергенция магнитного поля всегда равна нулю. Следовательно, уравнения (40.19) имеют такие же решения, как и уравнения для Е в электро­статике или уравнения для В в магнитостатике. Фактически в гл. 12, § 5 (вып. 5), мы уже решили задачу об обтекании сферы потоком в качестве электростатического аналога. Электростатическим аналогом является однородное электриче­ское поле плюс поле диполя, причем поле диполя подбирается таким, чтобы скорость потока, нормальная к поверхности сферы, была равна нулю. Задачу об обтекании цилиндра можно решить таким же способом, выбрав подходящее направление диполя относительно однородного потока. Эти решения спра­ведливы в тех случаях, когда скорость жидкости на больших расстояниях постоянна как по величине, так и по направлению. Они изображены на фиг. 40.11,а.

Фиг. 40.11. Обтекание цилиндра идеальной жидкостью (а), циркуля­ция вокруг цилиндра (б) и cyпepрозuция случаев а и б (в).

Задача об обтекании цилиндра имеет и другое решение, когда условия таковы, что поток на больших расстояниях движется по окружности вокруг цилиндра. Тогда поток будет круговым повсюду (фиг. 40.11,6). У такого потока есть цирку­ляция вокруг цилиндра, хотя СXv в жидкости остается нулем. Но как циркуляция может существовать без ротора?

У нас есть циркуляция вокруг цилиндра, ибо криволинейный интеграл от v по замкнутой пет­ле, охватывающей цилиндр, не равен нулю. В то же время криволинейный интеграл от v по любому замкнутому пути, который не охватывает цилинд­ра, будет нулем. Аналогичные вещи встречались нам и рань­ше, когда мы определяли маг­нитное поле вокруг проводника. Ротор В был нулем вне провода, хотя криволинейный интеграл от В по пути, охватывающему провод, не исчезает. Поле скоростей в безвихревой циркуля­ции вокруг цилиндра в точности такое же, как и магнитное поле вокруг провода. Для кругового пути с центром, совпадаю­щим с центром цилиндра, криволинейный интеграл от скорос­ти равен

Для безвихревого потока интеграл не должен зависеть от r. Обозначим его через постоянную С и получим

где v — тангенциальная скорость, а r — расстояние от оси. Существует очень хороший способ демонстрации циркуля­ции жидкости в трубе. Вы берете прозрачный цилиндрический резервуар с трубкой в центре дна. Наполняете его водой, немного раскручиваете ее палочкой и вынимаете пробку из отводной трубы. И получаете тот красивый эффект, который показан на фиг. 40.12.

Фиг. 40.12. Вода с циркуляцией вытекает из резервуара.

(Подобное явление вы наверняка много раз видели в ванне!) Хотя вначале вы и создали некоторую угловую скорость w, она из-за вязкости вскоре затухает и поток становится безвихревым. Однако ка­кая-то циркуляция вокруг трубки все же остается.