Выбрать главу

Фиг. 41.1. Увлечение жидкости между двумя параллельными пластинками.

Если вы будете измерять силу, требуемую для поддержания движения верхней пластины, то найдете, что она пропорциональна площади пластины и отно­шению v0/d, где d расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально v0/d:

Коэффициент пропорциональности h называется коэффициен­том вязкости.

Если перед нами более сложный случай, то мы всегда можем рассмотреть в воде небольшой плоский прямоугольный объем, грани которого параллельны потоку (фиг. 41.2).

Фиг. 41.2. Напряжения сдви­га в вязкой жидкости.

Силы в этом объеме определяются выражением

Далее, дvx/дy представляет скорость изменения деформаций сдвига, определенных нами в гл. 38, так что силы в жидкости пропорциональны скорости изменения деформаций сдвига.

В общем случае мы пишем

При равномерном вра­щении жидкости производ­ная дuх/ду равна дvy/дx с обратным знаком, a Sxy будет равна нулю, как это и требуется, ибо в равно­мерно вращающейся жидкости напряжения отсутствуют. (Подобную же вещь мы проде­лывали в гл. 39 при определении еxy .) Разумеется, для Syz и Sгх тоже есть соответствующие выражения.

В качестве примера применения этих идей рассмотрим дви­жение жидкости между двумя коаксиальными цилиндрами. Пусть радиус внутреннего цилиндра равен а, его скорость будет vа, а радиус внешнего цилиндра пусть будет b, а скорость равна vb (фиг. 41.3).

Фиг. 41.3. Поток жидкости между двумя концентрическими цилиндрами, вращающимися с разными угловыми скоростями.

Возникает вопрос, каково распределение скоростей между цилиндрами? Чтобы ответить на него, начнем с получения формулы для вязкого сдвига в жидкости на рас­стоянии r от оси. Из симметрии задачи можно предположить, что поток всегда тангенциален и что его величина зависит только от r; v=v(r). Если мы понаблюдаем за соринкой в воде, расположенной на расстоянии r от оси, то ее координаты как функции времени будут

x = rcoswt, у=rsinwt,

где w=v/r. При этом х- и y-компоненты скорости равны

vx=-rwsinwt =-wу и vy= rwcoswt=wх. (41.4)

Из формулы (41.3) получаем

Для точек с у=0 имеем дw/ду=0, а х(дw/дх) будет равно r(dw)/dr). Так что в этих точках

(Разумно думать, что величина S должна зависеть от дwr, когда w не изменяется с r, жидкость находится в состоянии равномерного вращения и напряжения в ней не возникают.) Вычисленное нами напряжение представляет собой танген­циальный сдвиг, одинаковый повсюду вокруг цилиндра. Мы можем получить момент сил, действующий на цилиндриче­ской поверхности радиусом r, путем умножения напряжения сдвига на плечо импульса r и площадь 2prl: