Выбрать главу

2) включите поле в направлении оси у;

3) выключите x-поле;

4) выключите y-поле.

Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, axy должно быть равно а. Однако те же рассуждения можно провести и для axz и т. д. Таким образом, тензор поляризуемости симметричен.

Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сна­чала взяли электрическое поле Е с компонентами х и у; тогда, согласно уравнению (31.7),

Если бы у нас была только одна компонента Ех, мы могли бы определить aхх, а с одной компонентой Еy можно определить ayy . Включив обе компоненты Ех и Еy , мы из-за присутствия члена (aху+aух) получим добавочную энергию, ну а поскольку axy и ayx равны, то этот член превращается в 2axy и мо­жет быть вычислен из добавочной энергии.

Выражение для энергии (31.8) имеет очень красивую геомет­рическую интерпретацию. Предположим, что нас интересует, какие поля Ех и Еy отвечают данной плотности энергии, скажем u0. Возникает чисто математическая задача решения уравне­ния

Это уравнение второй степени, так что, если мы отложим по осям величины Ех и Еy , решением этого уравнения будут все точки эллипса (фиг. 31.2).

Фиг. 31.2 Конец любого вектора E=(Ex, ev) , лежащего на этой кривой, дает одну и ту же анер­гию поляризации.

(Это должен быть именно эллипс, а не парабола и не гипербола — ведь энергия поля всегда положительна и конечна.) А само Е с компонентами Ех и Еy представ­ляет вектор, идущий из начала координат до точки на эллипсе. Такой «энергетический эллипс» — хороший способ «увидеть» тензор поляризуемости.

Если теперь пустить в дело все три компоненты, то любой вектор Е, необходимый для создания единичной плотности энергии, задается точками, расположенными на эллипсоиде, подобно изображенному на фиг. 31.3. Форма этого эллипсоида постоянной энергии однозначно характеризует тензор поляри­зуемости.

Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием на­правления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наи­меньшего и наибольшего диаметра и направление, перпендику­лярное к ним. На фиг. 31.3 они обозначены буквами а, b и с.

Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.

По отношению к этим осям уравнение эллипсоида имеет осо­бенно простую форму:

Итак, по отношению к главным осям у тензора поляризуе­мости останутся только три ненулевые компоненты aаа, abb и aсс. Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей ста­новится особенно простым:

Ра =aааЕа, Рb =abbEb, Рс =aссЕс. (31.9)

Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.

Тензор часто записывается в виде таблицы из девяти коэф­фициентов, взятых в скобки: