Выбрать главу

е0+е'0 =е"0.

Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.

Можно было бы обратиться к (33.30) Bz2=Вz1, но у вектора В отсутствует z-компонента! Осталось только одно условие — (33.31) Ву2у1. Для наших трех волн

Подставляя вместо Ei,Er и Et волновые выражения при x=0 (ибо дело происходит на границе), мы получаем следующее граничное условие:

Учитывая равенство всех w и ky , снова приходим к условию kxE0 + k'xE'0=k"xE"0. (33.50)

Это дает нам уравнение для величины Е, отличное от (33.48). Получившиеся два уравнения можно решить относительно E'0 и Е"0. Вспоминая, что k’x=-kx, получаем

Вместе с (33.45) или (33.46) для kx эти формулы дают нам все, что мы хотели узнать. Следствия полученного результата мы обсудим в следующем параграфе.

Если взять поляризованную волну с вектором Е, параллель­ным плоскости падения, то Е, как это видно из фиг. 33.7, будет иметь как x-, так и y-компоненту. Вся алгебра при этом будет менее хитрая, но более сложная. (Можно, правда, несколько уменьшить работу в этом случае, выражая все через магнитное поле, которое целиком направлено по оси z.)

Фиг. 33.7. Поляризации волн, когда поле Е в падающей волне па­раллельно плоскости падения.

При этом мы найдем

и

Давайте посмотрим, будет ли наш результат согласовываться с тем, что мы получали раньше. Выражение (33.3) мы вывели в вып. 3, когда находили отношение интенсивностей отражен­ной и падающей волн. Однако тогда мы рассматривали только вещественный показатель преломления. Для вещественного показателя (или вещественных k) можно записать:

kx=kcosqi=(wn1/c)cosqi,

k"x=k"cosqt=(wn2/c)cosqt.

Подставляя это в уравнение (33.51), получаем

что нисколько не похоже на уравнение (33.3). Если, однако, мы воспользуемся законом Снелла и избавимся от всех n, то сход­ство будет восстановлено. Подставляя n2=n1(sinqi/sinqt) и умножая числитель и знаменатель на sinqt, получаем

Обратите внимание, что в числителе и знаменателе стоят просто синусы (qi-qt) и (qi+qt), поэтому

Поскольку амплитуды E'0 и E0 измеряются в том же самом мате­риале, интенсивности пропорциональны квадратам электри­ческих полей и мы получаем тот же результат, что и раньше. Подобным же образом формула (33.53) тоже аналогична форму­ле (33.4).

Для волн, падающих перпендикулярно, qi=0 и qt=0. Формула (33.56) выглядит как 0/0, от чего нам пользы мало. Однако мы можем вернуться назад к формуле (33.55), согласно которой

Этот результат, естественно, применим для «любой» поляриза­ции, поскольку для перпендикулярного луча нет никакой особой «плоскости падения».

§ 5. Отражение от металлов

Теперь мы можем использовать наши результаты для пони­мания интересного явления — отражения от металлов. Почему металлы блестят? В предыдущей главе мы видели, что показа­тель преломления металлов для некоторых частот имеет очень большую мнимую часть. Давайте посмотрим, какова будет интен­сивность отраженной волны, когда свет падает из воздуха (с по­казателем n=1) на материал с n=- inI. При этом условии уравнение (33.55) дает (для нормального падения)