Выбрать главу

Интегрируя по времени, получаем

Заметьте, что равно объему тора, поэтому плотность энергии и=U/(Объем магнитного материала), как мы показали, равна

Здесь выявляется одно интересное обстоятельство. Когда в обмотке течет переменный ток, то В в железе «ходит» по петле гистерезиса. А поскольку В — неоднозначная функция Я,

то интеграл ∫HdB по замкнутому циклу равен не нулю, а площади, заключенной внутри петли гистерезиса. Таким об­разом, за каждый цикл источник тока отдает некоторую энер­гию, равную площади петли гистерезиса. Это есть потери из электромагнитного цикла; энергия уходит на нагревание желе­за. Такие потери называются гистерезисными. Чтобы они были поменьше, петлю гистерезиса желательно сделать как можно уже. Один из способов уменьшить площадь петли — это мак­симально уменьшить поле в каждом цикле. Для меньших мак­симальных полей мы получаем гистерезисную кривую, подобную изображенной на фиг. 36.9.

Фиг. 36.9. Петля гистерезиса, не достигающая насыщения.

Кроме того, применяются особые мате­риалы с очень узкой пет­лей. Чтобы получить это свойство, специально соз­дано так называемое трансформаторное желе­зо, которое представляет сплав железа с небольшой примесью кремния.

Когда петля гистерезиса очень мала, соотношение В и Н приближенно можно представлять в виде линейного урав­нения. Обычно пишут

В=mН. (36.23)

Здесь постоянная m вовсе не магнитный момент, с которым мы встречались раньше. Она называется магнитной проницае­мостью. (Иногда ее называют также относительной проница­емостью.) Типичная проницаемость обычных сортов железа равна нескольким тысячам. Однако существуют специальные сплавы, типа так называемого «супермаллоя», проницаемость которых может быть порядка миллиона.

Если в уравнении (36.21) мы воспользуемся приближением В=mН, то энергию индуктивности, имеющей форму тора, мож­но записать как

так что плотность энергии приближенно равна

Теперь мы можем выражение для энергии (36.24) положить равным энергии индуктивности LI2/2 и найти L. Получается

А воспользовавшись выражением (36.20) для отношения H/I, находим