Выбрать главу

где а — некоторая постоянная. Амплитуда пребывания в та­кой-то точке пространства для всех точек одинакова, но зато зависит от времени согласно (5.1). Мы просто допустим, что это правило верно всегда.

Можно, конечно, (5.1) записать и так:

где

а М — масса покоя атомного состояния или частицы. Суще­ствуют три разных способа определения энергии: по частоте амплитуды, по энергии в классическом смысле или по инертной массе. Все они равноценны; это просто разные способы выра­жать одно и то же.

Вам может показаться, что странно представлять себе «частицу», обладающую одинаковыми амплитудами оказаться в пространстве где угодно. Ведь, помимо прочего, мы всегда представляем себе «частицу» как небольшой предмет, располо­женный «где-то». Но не забудьте о принципе неопределенности. Если частица обладает определенной энергией, то и импульс у нее определенный. Если неопределенность в импульсе равна нулю, то соотношение неопределенностей DрDx=h говорит, что неопределенность в положении должна быть бесконечной; именно это мы и утверждаем, говоря, что существует одинако­вая амплитуда обнаружить частицу во всех точках простран­ства.

Если внутренние части атома находятся в другом состоянии с другой полной энергией, тогда амплитуда меняется во вре­мени по-другому. А если вы не знаете, в каком состоянии на­ходится атом, то появится некоторая амплитуда пребывания в одном состоянии и некоторая амплитуда пребывания в дру­гом, и у каждой из этих амплитуд будет своя частота. Между этими двумя разными компонентами появится интерференция наподобие биений, которые могут проявиться как переменная вероятность. Внутри атома будет что-то «назревать», даже если он будет «в покое» в том смысле, что его центр масс не будет двигаться. Если же атом обладает только одной определен­ной энергией, то амплитуда дается формулой (5.1) и квадрат модуля амплитуды от времени не зависит. Следовательно, вы видите, что если энергия какой-то вещи определена и если вы задаете вопрос о вероятности чего-то в этой вещи, то ответ от времени не зависит. Хотя сами амплитуды от времени зависят, но если энергия определенная, они изменяются как мнимая экс­понента и абсолютное значение (модуль) их не меняется.

Вот почему мы часто говорим, что атом на определенном энергетическом уровне находится в стационарном состоянии. Если вы что-то внутри него измеряете, вы обнаруживаете, что ничего (по вероятности) во времени не меняется. Чтобы вероят­ность менялась во времени, должна быть интерференция двух амплитуд при двух разных частотах, а это означало бы, что неизвестно, какова энергия. У предмета были бы одна ампли­туда пребывания в состоянии с одной энергией и другая ам­плитуда пребывания в состоянии с другой энергией. Так в квантовой механике описывается что-то, если поведение этого «чего-то» зависит от времени.

Если имеется случай, когда смешаны два различных со­стояния с разными энергиями, то амплитуды каждого из двух состояний меняются со временем согласно уравнению (5.2), скажем, как

И если имеется комбинация этих двух состояний, то появится интерференция. Но заметьте, что добавление к обеим энергиям одной и той же константы ничего не меняет. Если кто-то другой пользовался другой шкалой энергий, на которой все энергии сдвинуты на константу (скажем, на А), то амплитуды оказаться в этих двух состояниях, с его точки зрения, были бы

Все его амплитуды оказались бы умноженными на один и тот же множитель