Выбрать главу

Фиг. 5.8. Амплитуда вероятности в области с поперечным градиентом потенциала.

Мы начертили ряд «узлов волн», которые вы можете считать, скажем, поверхностями, где фаза амплитуды равна нулю. В любой небольшой области длина волны (расстояние между соседними узлами) равна

где р связано с V формулой

В области, где V больше, там р меньше, а волны длиннее. По­этому направление линий узлов волн постепенно меняется, как показано на рисунке.

Чтобы найти изменение наклона линий узлов волн, заме­тим, что на двух путях а и b имеется разность потенциалов DV=(дV/дy)D, а значит, и разница Dр между импульсами. Эту разность можно получить из (5.28):

Волновое число p/h поэтому тоже на разных путях различно, что означает, что фазы растут вдоль них с разной скоростью. Разница в скорости роста фазы есть Dk=Dр/h, и накопленная на всем пути w разность фаз будет равна

Это число показывает, на сколько к моменту выхода из полосы фаза вдоль пути b «опережает» фазу вдоль пути а. Но на вы­ходе из полосы такое опережение фаз отвечает опережению узла волны на величину

или

Обращаясь к фиг. 5.8, мы видим, что новый фронт волны повер­нется на угол dq, даваемый формулой

так что мы имеем

А это совпадает с (5.26), если заменить р/М на v, а DV/D на дV/дy.

Результат, который мы только что получили, верен лишь, когда потенциал меняется медленно и плавно — в так называе­мом классическом пределе. Мы показали, что при этих условиях получим те же движения частиц, что получились бы и из F=ma, если предположить, что потенциал дает вклад в фазу ампли­туды вероятности, равный Vt/h. В классическом пределе кван­товал механика оказывается, в согласии с ньютоновской меха­никой.

§ 5. «Прецессия» частицы со спином 1/2

Заметьте, что мы не предполагали, что потенциальная энер­гия у нас какая-то особая, это просто энергия, производная от которой дает силу. Например, в опыте Штерна — Герлаха энергия имела вид U=-m·B; отсюда при наличии у В прост­ранственной вариации и получалась сила. Если бы нам нужно было квантовомеханическое описание опыта, мы должны были бы сказать, что у частиц в одном пучке энергия меняется в одну сторону, а в другом пучке — в обратную сторону, (Маг­нитную энергию U можно было бы вставить либо в потенциаль­ную энергию V, либо во «внутреннюю» энергию W; куда именно, совершенно неважно.) Из-за вариаций энергии волны прелом­ляются, пучки искривляются вверх или вниз. (Мы теперь знаем, что квантовая механика предсказывает то же самое искривле­ние, которое следует и из расчета по классической механике.)

Из зависимости амплитуды от потенциальной энергии также следует, что у частицы, сидящей в однородном магнитном поле, направленном по оси z, амплитуда вероятности обязана ме­няться во времени по закону

(Можно считать это просто определением mz.) Иначе говоря, если поместить частицу в однородное поле В на время t, то ее амплитуда вероятности умножится на

сверх того, что было бы без поля. Поскольку у частицы со спи­ном 1/2 величина mz может быть равна плюс или минус какому-то числу, скажем m, то у двух мыслимых состояний в однород­ном поле фазы будут меняться с одинаковой скоростью в про­тивоположные стороны. Амплитуды помножатся на

Этот результат приводит к интересным следствиям. Пусть частица со спином 1/2 находится в каком-то состоянии, которое не есть ни чистое состояние со спином вверх, ни чистое состоя­ние со спином вниз. Его можно описать через амплитуды пре­бывания в этих двух состояниях. Но в магнитном поле у этих двух состояний фазы начнут меняться с разной скоростью. И если мы поставим какой-нибудь вопрос насчет амплитуд, то ответ будет зависеть от того, сколько времени частица провела в этом поле.