А как обстоит дело с системами нескольких электронов? В этих случаях базисные состояния становятся сложнее. Пусть электронов пара. Во-первых, имеются четыре мыслимых состояния по отношению к спину: у обоих электронов спины вверх, или у первого вверх, а у второго вниз, или у первого вниз, а у второго вверх, или у обоих вниз. Кроме того, нужно указать, что у первого электрона импульс p1 а у второго импульс р2. Базисные состояния для двух электронов требуют указания двух импульсов и двух значков для спина. Для семерки электронов нужно указать семь пар таких чисел.
Если же имеются протон и электрон, то нужно указать направление спина протона и его импульс и направление спина электрона и его импульс. По крайней мере, в каком-то приближении это так. Мы на самом деле не знаем, каким является правильное представление для нашего мира. Мы начинаем с предположения, что если указать спин и импульс электрона и то же самое для протона, то получатся базисные состояния; все это очень хорошо, но как быть с «протоньими внутренностями»? В самом деле, рассудим следующим образом. В атоме водорода, в котором имеются один протон и один электрон, приходится описывать множество различных базисных состояний, отмечать направления вверх и вниз у спинов протона и электрона и всевозможные импульсы протона и электрона. Затем имеются различные комбинации амплитуд Сi; все вместе они описывают характер атома водорода в тех или иных состояниях. Но представьте, что мы смотрим на целый атом водорода, как на «частицу». Если бы мы не знали, что он состоит из протона и электрона, то могли бы сказать: «О, я знаю, какие у него базисные состояния — они соответствуют разным импульсам атома водорода». Но это на самом деле не так, ведь у атома водорода есть какие-то внутренние части. Значит, у него могут быть различные состояния с разной внутренней энергией, и описание реальной природы потребовало бы дальнейших подробностей.
То же и с протоном. Вопрос стоит так: есть ли у протона внутренние части? Должны ли мы описывать протон, задавая все мыслимые состояния протонов, мезонов или странных частиц? Мы этого не знаем. И даже хотя мы допускаем, что электрон прост и все, что можно о нем сказать,— это задать его импульс и спин, но ведь не исключена возможность завтра открыть наличие внутри электрона каких-то колесиков и шестеренок. А это будет означать, что наше представление неполно, или неверно, или неточно, так же как и представление атома водорода, описывающее только его импульс, было бы неполным, потому что оно пренебрегало бы тем фактом, что атом водорода может оказаться возбужденным изнутри. Если электрон тоже может оказаться возбужденным изнутри и превратиться еще во что-то, например в мюон, то его следовало бы описывать не простым заданием состояний новой частицы, а, вероятно, в терминах более сложных внутренних колесиков. Главная сегодняшняя проблема в изучении фундаментальных частиц и состоит в том, чтобы открыть, каковы правильные представления для описания природы. В настоящее время мы полагаем, что для электрона достаточно указывать его импульс и спин. Но мы полагаем также, что существует идеализированный протон, имеющий при себе свои p-мезоны, свои K-мезоны и т. д., и все они должны быть отмечены. Но ведь отмечать несколько десятков частиц смысла мало! Вопрос о том, что есть фундаментальная частица, а что — не фундаментальная,— вопрос, о котором столько сейчас говорится,— это вопрос о том, на что будет похоже окончательное представление в окончательном квантовомеханическом описании мира. Будет ли такая вещь, как импульс электрона, все еще способна описывать природу? И вообще нужно ли весь вопрос ставить именно таким образом! Такие мысли беспрерывно возникают в любом научном исследовании. Во всяком случае, проблема нам понятна — как найти представление? Но ответа мы не знаем. Мы даже не знаем, «в этом ли состоит» проблема или нет; но если проблема в этом, то сперва нужно попытаться узнать, «фундаментальна» или нет каждая отдельная частица.