Выбрать главу

В нерелятивистской квантовой механике, где энергии не очень высоки и где вы не затрагиваете внутреннего устройства странных частиц и т. п., вы можете делать весьма сложные расчеты, не заботясь об этих деталях. Вы можете просто оста­новиться на импульсах и спинах электронов и ядер и все будет в порядке. В большинстве химических реакций и других низко­энергетических событий в ядрах ничего не происходит; они не возбуждаются. Дальше, если атом водорода движется мед­ленно и если он спокойно стукается о другие атомы водорода и ничего внутри него не возбуждается, не излучается, никаких сложностей не происходит, а все остается в основном состоя­нии энергии внутреннего движения, — в этом случае вы мо­жете пользоваться приближением, при котором об атоме во­дорода говорят как об отдельном предмете, или частице, не за­ботясь о том, что он может что-то внутри себя с собой сделать. Это будет хорошим приближением до тех пор, пока кинетиче­ская энергия в любом столкновении будет заметно меньше 10 эв, т. е. энергии, требуемой для того, чтобы возбудить атом водо­рода до следующего внутреннего состояния. Мы часто будем прибегать к приближению, при котором исключается возмож­ность внутреннего движения, тем самым уменьшая число де­талей, которые должны быть учтены в наших базисных состояниях. Конечно, при этом мы опускаем кое-какие явления, которые проявляются (как правило) при каких-то высших энер­гиях, но такое приближение сильно упрощает анализ физиче­ских задач. Например, можно рассуждать о столкновении двух атомов водорода при низкой энергии (или о любом химическом процессе), не заботясь о том, что атомные ядра могут возбуж­даться. Итак, подведем итог. Когда мы вправе пренебречь влиянием любых внутренних возбужденных состояний части­цы, мы вправе выбрать базисную совокупность из состояний с определенным импульсом и z-компонентой момента количе­ства движения.

Первой проблемой при описании природы является отыска­ние подходящего представления для базисных состояний. Но это только начало. Надо еще уметь сказать, что «случится». Если известны «условия» в мире в один момент, то мы хотим знать условия в более поздний момент. Значит, надо также найти законы, определяющие, как все меняется со временем. Мы теперь обращаемся ко второй части основ квантовой меха­ники — к тому, как состояния меняются во времени.

§ 4. Как состояния меняются во времени

Мы уже говорили о том, как отображать ход событий, где мы что-то пропускаем через прибор. Но самый привлекатель­ный, самый удобный для рассмотрения «опыт» состоит в том, что вы останавливаетесь и ждете несколько минут, т. е. вы приготовляете состояние j и, прежде чем проанализировать его, оставляете его в покое. Быть может, вы оставите его в покое в каком-то электрическом или магнитном поле — все зависит от физических обстоятельств. Во всяком случае, ка­кими бы ни были условия, вы от момента t1 до момента t2 ос­тавляете объект на свободе. Допустим, что он выпущен из на­шего первого прибора в состоянии j в момент t1. А затем он проходит через «прибор», в котором он находится до момента t2. Во время такой «задержки» могут продолжаться различные события, прилагаться внешние силы,— словом, что-то в это время случается. После такой задержки амплитуда того, что этот объект обнаружится в состоянии c, уже не та же самая, какой она была бы, если бы задержки не было. Так как «ожи­дание» — это просто частный случай «прибора», то можно опи­сать то, что происходит, задав амплитуду в том же виде, как в уравнении (6.17). Поскольку операция «ожидания» представляет особую важность, мы вместо А обозначим ее U, а чтобы отмечать начальный и конечный моменты t1 и t2, будем писать U (t2, t1). Интересующая нас амплитуда — это