Молекулу аммиака образуют один атом азота и три атома водорода, плоскость которых проходит мимо атома азота, так что молекула имеет форму пирамидки (фиг. 6.1, а).
Фиг. 6.I. Два равноценных геометрических расположения молекулы аммиака.
Эта молекула, как и всякая другая, обладает бесконечным количеством состояний. Она может вращаться вокруг какой угодно оси; двигаться в любом направлении, вибрировать и т. д. и т. п. Значит, это вовсе не система с двумя состояниями. Но мы сделаем следующее приближение: предположим, что все прочие степени свободы закреплены и не связаны с теми, которые нас сейчас интересуют. Будем считать, что молекула может только вращаться вокруг оси симметрии (как показано на рисунке), что импульс ее переносного движения равен нулю и что ее колебания очень слабы. Это фиксирует все условия, кроме одного: для, атома азота все еще существуют два возможных положения — он может оказаться по одну сторону плоскости атомов водорода, а может оказаться и по другую (фиг. 6.1). Так что мы будем рассуждать о молекуле, как если бы она была системой с двумя состояниями. Под этим подразумевается, что существуют только два состояния, о которых реально следует заботиться, все же прочее предполагается зафиксированным. Как видите, если даже известно, что молекула вращается вокруг оси с определенным моментом количества движения и что она движется с определенным импульсом и колеблется определенным образом, то все равно еще остаются два Допустимых состояния. Будем говорить, что молекула находится в состоянии |1>, когда азот «вверху» (фиг. 6.1, а) и в состоянии |2>, когда азот «внизу» (фиг. 6.1, б). Состояния |1> и |2> в нашем анализе поведения молекулы аммиака можно принять за совокупность базисных состояний В каждый момент истинное состояние |y> молекулы может быть представлено заданием C1=<1|y> — амплитуды пребывания в состоянии \1 и С2=<2|y> — амплитуды пребывания в состоянии |2>. Тогда, используя (6.8), вектор состояния |y> можно записать так:
Но вот что интересно: если известно, что молекула в определенный момент была в определенном состоянии, то в следующий момент она может уже не быть в том же состоянии. Два С-коэффициента меняются со временем в соответствии с уравнениями (6.43), которые верны для любой системы с двумя состояниями. Предположим, к примеру, что вы сделали какое-то наблюдение (или как-то отобрали молекулы), так что знаете, что первоначально молекула находилась в состоянии |1>. Чуть позже уже появляются некоторые шансы засечь ее в состоянии |2>. Чтобы узнать, сколь велики эти шансы, нужно решить дифференциальное уравнение, которое говорит, как амплитуды меняются со временем.
Единственная трудность в том, что мы не знаем, что ставить вместо коэффициентов Нij в (6.43). Но кое-что мы все же можем сказать. Предположим, что, если уж молекула оказалась в состоянии \1 >, тогда у нее не будет никакого шанса когда-либо попасть в состояние |2>, И наоборот. Тогда H12 и H21 будут оба равны нулю, и (6.43) примет вид
Эти уравнения легко решить; получается
Это просто амплитуды стационарных состояний с энергиями E1=H11 и E2=H22. Еще мы знаем, что у молекулы аммиака состояния |1> и |2> обладают определенной симметрией. Если природа ведет себя более или менее разумно, то матричные элементы Н11 и H22 должны равняться друг другу. Мы обозначим их через Е0, потому что они соответствуют энергии, которой обладали бы состояния, будь H12 и H21 равны нулю.
Но (6.45) не отражает того, что на самом деле бывает с аммиаком. Оказывается, что аммиак имеет возможность протолкнуть свой азот мимо трех водородов и перебросить его по ту сторону. Это очень трудно: чтобы азоту пройти полпути, нужна немалая энергия. Как же он может пройти на другую сторону, если он не располагает достаточной энергией? Просто имеется некоторая амплитуда того, что он проникнет сквозь энергетический барьер. В квантовой механике разрешается быстро проскакивать через энергетически нелегальную область. Стало быть, существует небольшая амплитуда того, что молекула, начав с состояния |1>, перейдет в состояние |2>. Коэффициенты Н12 и Н21 на самом деле не равны нулю. И опять из симметрии ясно, что они должны быть одинаковы, по крайней мере по величине. И действительно, мы уже знаем, что вообще Нij равняется комплексно сопряженной величине Нji, т. е, они могут отличаться только фазой. Оказывается, как вы потом увидите, что без потери общности можно положить эти коэффициенты равными друг другу. Позднее нам будет удобнее считать их равными отрицательному числу; мы примем поэтому H12=H21=-А. Тогда получится следующая пара уравнений: