Выбрать главу

Вы видите, что это та же игра, в какую мы играли в послед­них двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщеп­ляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность пере­хода, тем больше расщепление. Стало быть, два уровня энер­гии системы равны Е0+А и Е0-А, и состояния, у которых такие энергии, даются уравнениями (8.7).

Из нашего решения мы видим, что если протон и водород­ный ион как-то расположить близко один к другому, то элек­трон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ од­ного из протонов, то затем он начнет колебаться туда и назад между состояниями |1> и |2>, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низ­кой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверж­даем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ц2 по величине) быть в том или ином положении.

Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от рас­стояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспо­ненте (для больших расстояний). Раз вероятность, а следова­тельно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если си­стема находится в состоянии |I>, то энергия Е0+А с умень­шением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии |II>, то полная энергия при сближении протонов убывает; сущест­вует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами пример­но так, как показано на фиг. 8.2.

Фиг. 8.2. Энергии двух стационарных состояний иона h+2 как функция расстояния между двумя протонами.

Тем самым у нас появляется квантовомеханическое объяснение силы связи, скрепляющей

ион H+2.

Однако мы позабыли об одной вещи. В дополнение к только что описанной силе имеется также электростатическая сила взаимного отталкивания двух протонов. Когда оба протона очень удалены друг от друга (как на фиг. 8.1), то «голый» про­тон видит перед собой только нейтральный атом, так что элек­тростатической силой можно пренебречь. При очень тесных сближениях, однако, «голый» протон оказывается порой «внут­ри» электронного распределения, т. е. в среднем он ближе к протону, чем к электрону. Появляется некоторая добавочная электростатическая энергия, которая, конечно, положительна. Эта энергия — она тоже зависит от расстояния — должна быть включена в Е0. Значит, за Е0 мы должны принять нечто похожее на штриховую кривую на фиг. 8.2; она быстро поды­мается на расстояниях, меньших, чем радиус атома водорода. Энергию переворота А надо вычесть и прибавить к этому Е0. Если это сделать, то энергии ЕI и ЕII будут меняться с меж­протонным расстоянием D, как показано на фиг. 8.3.