Выбрать главу

Всякое мыслимое состояние |y> электрона можно описать уравнением (8.1), задав амплитуду С1 того, что электрон нахо­дится в состоянии |1>, и амплитуду С2 того, что он находится в состоянии 2у. Для этого нам понадобится гамильтониан нашей системы с двумя состояниями — электрона в магнитном поле. Начнем с частного случая магнитного поля в направле­нии z.

Пусть вектор В имеет только z-компоненту Bz. Из определе­ния двух базисных состояний (что их спины параллельны и анти­параллельны В) мы знаем, что они уже являются стационарными состояниями — состояниями с определенной энергией в маг­нитном поле. Состояние |1> соответствует энергии, равной — mВz, а состояние |2> — энергии +mBz. В этом случае га­мильтониан должен быть очень простым, поскольку на С1амплитуду оказаться в состоянии |1> С2 не влияет и наоборот:

В этом частном случае гамильтониан равен

Итак, мы знаем, какой вид имеет гамильтониан, когда магнит­ное поле направлено по z, и знаем еще энергии стационарных состояний.

А теперь пусть поле не направлено по z. Каков теперь га­мильтониан? Как меняются матричные элементы, когда поле не направлено по z? Мы сделаем предположение, что для членов гамильтониана имеется своего рода принцип суперпозиции. Точнее, мы предположим, что если два магнитных поля нала­гаются одно на другое, то члены гамильтониана просто склады­ваются: если нам известно Hij для поля, состоящего из одной только компоненты Bz, и известно Нij для одной только Вх, то Hij для поля с компонентами Bz, Bx получится простым сло­жением. Это бесспорно верно, если рассматриваются только поля в направлении z: если удвоить Bz, то удвоятся и все Нij. Итак, давайте допустим, что Н линейно по полю В. Чтобы найти Hij для какого угодно магнитного поля, больше ничего и не нужно.

Пусть у нас есть постоянное поле В. Мы бы могли провести нашу ось z в направлении поля и обнаружили бы два стационарных состояния с энергиями ±mВ. Простой выбор другого направления осей не изменил бы физики дела. Наше описание стационарных состояний стало бы иным, но их энергии по-прежнему были бы ±mB, т. е.

Дальше все уже совсем легко. У нас есть формулы для энер­гий. Нам нужен гамильтониан, линейный по Вх, Вy и Bz, который даст именно такие энергии, если применить нашу общую фор­мулу (8.3). Задача — найти гамильтониан. Прежде всего за­метим, что энергия расщепляется симметрично и ее среднее значение есть нуль. Взглянув на (8.3), мы сразу же увидим, что для этого требуется

Н22=-H11.

(Заметьте, что это подтверждается тем, что нам уже известно при Вxy=0; в этом случае Н11=-mBz и H22=mBz.) Если теперь приравнять энергии из (8.3) к тому, что нам известно из (8.19), то получится

(Мы использовали также тот факт, что Н21=Н*12, так что H12H21 может быть записано в виде |Н12|2.) Опять в частном случае поля в направлении z это даст

откуда | H12| в этом частном случае равно нулю, что означает, что в H12 не может войти член с Вz. (Вы помните, что мы гово­рили о линейности всех членов по Вх, Вy и Bz.)