Выбрать главу

Итак, пока мы узнали, что в Н11 и H22 входят члены с Вz, а в H12 и H21 — нет. Можно попробовать угадать формулы, которые будут удовлетворять уравнению (8.20), написав

H11=-mВz,

H22=mBz

и

Оказывается, что никак иначе этого сделать нельзя!

«Погодите,— скажете вы,— H12 по В не линейно. Из (8.21) следует, что H12=mЦ(В2x2y)». Не обязательно. Есть и дру­гая возможность, которая уже линейна, а именно

Н12=m(Вx+iBy ).

На самом деле таких возможностей не одна, в общем случае можно написать

где d — произвольная фаза.

Какой же знак и какую фазу мы обязаны взять? Оказы­вается, что можно выбрать любой знак и фазу тоже любую, а физические результаты от этого не изменятся. Так что выбор — это вопрос соглашения. Еще до нас кто-то решил ставить знак минус и брать еid=-1. Мы можем делать так же и написать

(Кстати, эти соглашения связаны и согласуются с тем про­изволом в выборе фаз, который мы использовали в гл. 4.) Полный гамильтониан для электрона в произвольном маг­нитном поле, следовательно, равен

уравнения для амплитуд С1 и С2 таковы:

Итак, мы открыли «уравнения движения спиновых состояний» электрона в магнитном поле. Мы угадали их, пользуясь некото­рыми физическими аргументами, но истинная проверка всякого гамильтониана заключается в том, что он обязан давать предсказания, согласующиеся с экспериментом. Из всех сделанных проверок следует, что эти уравнения правильны. Более того, хотя все наши рассуждения относились к постоянному полю, написанный нами гамильтониан правилен и тогда, когда маг­нитные поля меняются со временем. Значит, мы теперь можем применять уравнения (8.23) для решения всевозможных инте­ресных задач.

§ 7. Вращающийся электрон в магнитном поле

Пример первый: пусть сначала имеется постоянное поле в направлении z. Ему соответствуют два стационарных состоя­ния с энергиями ±mВz. Добавим небольшое поле в направлении х. Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщеп­ляются. Пусть, далее, x-компонента поля начнет меняться во времени, скажем, как coswt. Тогда уравнения станут такими, как для молекулы аммиака в колеблющемся электрическом поле (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от +z-состояния к —z-состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, w0=2mBz/h. Это приводит к квантовомеханической теории явлений магнит­ного резонанса, описанной нами в гл. 35 (вып. 7).

Можно еще сделать мазер, в котором используется система со спином 1/2. Прибор Штерна — Герлаха создает пучок частиц, поляризованных, скажем, в направлении +z, и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнит­ным моментом, вызовут переходы, которые будут снабжать полость энергией.

Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле В, направление которого характеризуется полярным углом 6 и азимутальным углом j (фиг. 8.10).

Фиг. 8.10. Направление В опре­деляется полярным углом q и ази­мутальным углом j.

Допу­стим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды С1 и С2 для этого электрона? Иными словами, обозначая состояние электрона |y>, мы хотим написать