не сохраняет странности, так что «быстро», путем сильного взаимодействия, она идти не может. Может она идти только через слабый распадный процесс.
Далее, -мезон также распадается таким же путем (на p+ и p-) и тоже с таким же самым временем жизни:
Здесь опять идет слабый распад, потому что он не сохраняет странности. Существует принцип, по которому для всякой реакции всегда найдется соответствующая реакция, в которой «материя» заменяется «антиматерией» и наоборот. Раз— это античастица К0, она обязана распадаться на античастицы p+ и p- , но античастица p+ есть p- . (Или, если вам угодно, наоборот. Оказывается, что для p-мезонов неважно, кого из них назовут «материей», их эта материя совсем не интересует.) Итак, как следствие слабых распадов К0- и -мезоны могут превращаться в одинаковые конечные продукты. Если «видеть» их по их распадам (как в пузырьковой камере), то выглядят они, как совершенно одинаковые частицы. Отличаются только их сильные взаимодействия.
Теперь наконец-то мы доросли до того, чтобы описать работу Гелл-Манна и Пайса. Во-первых, они отметили, что раз К0 и оба могут превращаться в два p-мезонов, то должна также существовать некоторая амплитуда того, что К0 может превратиться в К0, и такая же амплитуда того, что превратится в К0. Реакцию можно записать так, как это делают химики:
Из существования таких реакций следует, что есть амплитуда, которую мы обозначим через, превращения К0 в, обусловленная тем самым слабым взаимодействием, с которым связан распад на два p-мезона. Ясно, что есть и амплитуда обратного процесса. Так как материя и антиматерия ведут себя одинаково, то эти две амплитуды численно равны между собой; мы обозначим их через А:
И вот, сказали Гелл-Манн и Пайс, здесь возникает интересная ситуация. То, что люди назвали двумя разными состояниями мира (К0 и), на самом деле следует рассматривать как одну систему с двумя состояниями, потому что имеется амплитуда перехода из одного состояния в другое. Для полноты рассуждений следовало бы, конечно, рассмотреть не два состояния, а больше, потому что существуют еще состояния 2л и т. д.; но поскольку наши физики интересовались главным образом связью К0 с, то они не захотели усложнять положения и представили его приближенно в виде системы с двумя состояниями. Другие состояния были учтены в той мере, в какой их влияние неявно скажется на амплитудах (9.44).
В соответствии с этим Гелл-Манн и Пайс анализировали нейтральную частицу как систему с двумя состояниями. Начали они с того, что выбрали состояния | К0 > и | > за базисные состояния. (С этого места весь рассказ становится очень похожим на то, что было для молекулы аммиака.) Всякое состояние |y> нейтрального K-мезона можно тогда описать, задав амплитуды того, что оно окажется в одном из базисных состояний. Обозначим эти амплитуды
Следующим шагом мы должны написать уравнение Гамильтона для такой системы с двумя состояниями. Если бы К0 и не были бы связаны между собой, то уравнения выглядели бы просто
Однако есть еще амплитуда
перехода К0 в ; поэтому в правую часть первого уравнения надо еще добавить слагаемое
Аналогичное слагаемое АС+ надо добавить и в уравнение, определяющее скорость изменения С _. Но это еще не все! Если уж мы учитываем двухпионный эффект, то надо учесть и то, что существует еще дополнительная амплитуда превращения К0 в самого себя по цепочке