Вспоминая, что А — комплексное число, удобно положить
(так как мнимая часть 2А оказывается отрицательной, мы пишем ее как минус ib). После такой подстановки С1(t) принимает вид
Вероятность обнаружить в момент t частицу К1 равна квадрату модуля этой амплитуды, т. е. e-2bt. А из (9.52) следует, что вероятность обнаружить в любой момент состояние K2 равна нулю. Это значит, что если вы создаете К -мезон в состоянии |К1>, то вероятность найти его в том же состоянии со временем экспоненциально падает, но вы никогда не увидите его в состоянии |К2>. Куда же он девается? Он распадается на два p-мезона со средним временем жизни t=1/2b, экспериментально равным 10-10 сек. Мы предусмотрели это, говоря, что А комплексное.
С другой стороны, (9.52) утверждают, что если создать .K-мезон целиком в состоянии К2, он останется в нем навсегда. На самом-то деле это не так. На опыте замечено, что он распадается на три p-мезона, но в 600 раз медленнее, чем при описанном нами двухпионном распаде. Значит, имеются какие-то другие малые члены, которыми мы в нашем приближении пренебрегли. Но до тех пор, пока мы рассматриваем только двухпионные распады, К2 остается «навсегда».
Рассказ о Гелл-Манне и Пайсе близится к концу. Дальше они посмотрели, что будет, когда K-мезон образуется вместе с L0-частицей в сильном взаимодействии. Раз его странность должна быть +1, он обязан возникать в состоянии К0, Значит, при t=0 он не является ни К1, ни К2, а их смесью. Начальные условия таковы:
Но это означает [из (9.50)], что
а из (9.52) следует, что
Теперь вспомним, что K1 и К2 суть линейные комбинации К0 и К°. В (9.54) амплитуды были выбраны так, что при t=0 части,
из которых состоит
Что же все это значит? Возвратимся назад и подумаем об опыте, показанном на фиг. 9.5. Там p--мезон образовал L0-частицу и K0-мезон, который летит без оглядки сквозь водород камеры. Когда он движется, существует ничтожный, но постоянный шанс, что он столкнется с ядром водорода. Раньше мы думали, что сохранение странности предохранит K-мезон от образования L0-частицы в таком взаимодействии. Теперь, однако, мы понимаем, что это не так. Потому что, хотя наш К-мезон вначале является К0-мезоном, неспособным к рождению L°-частицы, он не остается им навечно. Через мгновение появляется некоторая амплитуда того, что он перейдет в состояние
И когда K-частица движется, вероятность того, что она будет «действовать как»
Сложный и поразительный результат!
Это и есть замечательное предсказание Гелл-Манна и Пайса: когда возникает K0-мезон, то шанс, что он превратится в