где энергетическая матрица Hij описывает физику задачи. С виду она такая же, как и для двух состояний. Но только теперь и i, и j должны пробегать по всем N базисным состояниям, и энергетическая матрица Hij (или, если вам больше нравится, гамильтониан) — это теперь матрица NXN, состоящая из N2 чисел. Как и прежде, Hij=Hji (до тех пор, пока частицы сохраняются) и диагональные элементы Hii суть вещественные числа.
Мы нашли общее решение для всех С в системе с двумя состояниями, когда энергетическая матрица постоянна (не зависит от t). Точно так же нетрудно решить и уравнение (9.58) для системы с N состояниями, когда Н не зависит от времени. Опять мы начинаем с того, что ищем возможное решение, в котором у всех амплитуд зависимость от времени одинакова. Мы пробуем
Если все эти Ci подставить в (9.58), то производные dCi(t)/dt превращаются просто в (-i/h)ECi. Сокращая повсюду на общую экспоненту, получаем
Эта система N линейных алгебраических уравнений для N неизвестных a1 а2, . . ., аn; решение у нее бывает только тогда, когда вам сильно повезет, когда определитель из коэффициентов при всех а равен нулю. Но не нужно чересчур умничать: можете просто начать их решать любым способом, и вы сразу увидите, что решить их удается лишь при некоторых значениях E. (Вспомните, что единственная величина, которая в этих уравнениях подлежит подгонке, это Е.)
Если, впрочем, вы хотите, чтобы все было по форме, перепишите (9.60) так:
Затем примените правило (если оно вам знакомо), что эти уравнения будут иметь решения лишь для тех значений Е, для которых
Каждый член в детерминанте — это просто Hij и только из диагональных отнято Е. Иначе говоря, (9.62) означает просто
Это, конечно, всего-навсего особый способ записывать алгебраические уравнения для Е, складывая вереницы членов, перемножаемых в определенном порядке. Эти произведения дадут все степени Е вплоть до EN.
Значит, у нас есть многочлен N-й степени, который равняется нулю. У него, вообще говоря, есть N корней. (Нужно помнить, однако, что некоторые из них могут быть кратными корнями; это значит, что два или более корней могут быть равны друг другу.) Обозначим эти N корней так:
(пусть n обозначает n-е порядковое числительное, так что n принимает значения I,II, . . ., N). Некоторые из этих энергий могут быть между собой равны, скажем ЕII=ЕIII, но мы решили все же обозначать их разными именами.
Уравнения (9.60) или (9.61) имеют по одному решению для каждого значения Е [из (9.64)]. Если вы подставите любое из Е, скажем En, в (9.60) и найдете все аi, то получится ряд чисел аi, относящихся к энергии En . Этот ряд мы обозначим аi (n).
Если подставить эти аi (n) в (9.59), то получатся амплитуды Сi (n) того, что состояния с определенной энергией находятся в базисном состоянии |i>. Пусть |n> обозначает вектор состояния для состояния с определенной энергией при t=0. Тогда можно написать
где
Полное состояние с определенной энергией |yn(t)> можно тогда записать так: