или
Векторы состояний |n> описывают конфигурацию состояний с определенной энергией, но с вынесенной зависимостью от времени. Это постоянные векторы, которые, если мы захотим, можно использовать в качестве новой базисной совокупности.
Каждое из состояний |n> обладает тем свойством (в чем легко убедиться), что при действии на него оператором Гамильтона Н получится просто Еn , умноженное на то же состояние:
Значит, энергия Еn — это характеристическое число оператора Гамильтона Н^. Как мы видели, у гамильтониана в общем случае бывает несколько характеристических энергий. Физики обычно называют их «собственными значениями» матрицы Н. Для каждого собственного значения Н^, иными словами, для каждой энергии, существует состояние с определенной энергией, которое мы называли «стационарным». Состояния |n> обычно именуются «собственными состояниями Н^». Каждое собственное состояние отвечает определенному собственному значению Еn.
Далее, состояния |n> (их N штук) могут, вообще говоря, тоже быть выбраны в качестве базиса. Для этого все состояния должны быть ортогональны в том смысле, что для любой нары их, скажем |n> и |m),
<n|m>=0. (9.68)
Это выполнится автоматически, если все энергии различны. Кроме того, можно умножить все аi(n) на подходящие множители, чтобы все состояния были отнормированы: чтобы для всех n было
<n|n>=1. (9.69)
Когда оказывается, что (9.63) случайно имеет два (или больше) одинаковых корня с одной и той же энергией, то появляются небольшие усложнения. По-прежнему имеются две различные совокупности аi, отвечающие двум одинаковым энергиям, но состояния, которые они дают, не обязательно ортогональны. Пусть вы проделали нормальную процедуру и нашли два стационарных состояния с равными энергиями. Обозначим их |m> и |v>. Тогда они не обязательно окажутся ортогональными: если вам не повезло, то обнаружите, что
<m|v>№0.
Но зато всегда верно, что можно изготовить два новых состояния (обозначим их | m'> и |v'>) с теми же энергиями, но ортогональных друг другу:
<m'|v'>=0. (9.70)
Этого можно добиться, составив |m'> и |v'> из подходящих линейных комбинаций |m> и |v> с так подобранными коэффициентами, что (9.70) будет выполнено. Это всегда полезно делать, и мы будем вообще предполагать, что это уже проделано, так что можно будет считать наши собственноэнергетические состояния | n> все ортогональными.
Для интереса докажем, что когда два стационарных состояния обладают разными энергиями, то они действительно ортогональны. Для состояния |n> с энергией Еn
Это операторное уравнение на самом деле означает, что имеется соотношение между числами. Если заполнить недостающие части, то оно означает то же самое, что и
Проделав здесь комплексное сопряжение, получим
Теперь вспомним, что комплексно сопряженная амплитуда — это амплитуда обратного процесса, так что (9.73) можно переписать в виде
Поскольку это уравнение справедливо для всякого i, то его можно «сократить» до
Это уравнение называется сопряженным с (9.71).
Теперь легко доказать, что Еn— число вещественное. Умножим (9.71) на <n|. Получится
(с учетом, что <n|n>=1). Умножим теперь (9.75) справа на
|n>:
Сравнивая (9.76) с (9.77), видим, что
Еn=Еn*, (9.78)
а это означает, что En вещественно. Звездочку при Еn в (9.75) можно убрать.
Теперь наконец-то мы в силах доказать, что состояния с различными энергиями ортогональны. Пусть |n> и |m> — пара базисных состояний с определенными энергиями. Написав (9.75) для состояния |m> и умножив его на |n>, получим
Но если (9.71) умножить на <m|, то будет