Выбрать главу

или после перестановки членов

У такой системы однородных алгебраических уравнений не­нулевые решения для а1 и а2 будут лишь тогда, когда опре­делитель, составленный из коэффициентов при а1 и а2, равен нулю, т. е. если

Но когда уравнений два и неизвестных тоже два, то можно обойтись и без столь возвышенных представлений. Каждое из уравнений (7.20) и (7.21) дает отношение двух коэффициентов a1 и а2, и эти два отношения должны быть равны. Из (7.20) мы имеем

а из (7.21)

Приравнивая эти отношения, получаем, что Е должно удовле­творять равенству

(E-H11)(E-H22)-H12H21=0.

То же получилось бы и из (7.22). В любом случае для Е получается квадратное уравнение с двумя решениями:

Энергия E может иметь два значения. Заметьте, что оба они вещественны, потому что Н11 и H22 вещественны, а Н12Н21, равное Н12H12=|H12|2, тоже вещественно, да к тому же положительно.

Пользуясь тем же соглашением, что и раньше, обозначим большую энергию EI, а меньшую ЕII. Имеем

Подставив каждую из этих энергий по отдельности в (7.18) и (7.19), получим амплитуды для двух стационарных состояний (состояний определенной энергии). Если нет каких-либо внеш­них возмущений, то система, первоначально бывшая в одном из этих состояний, останется в нем навсегда, у нее только фаза будет меняться.

Наши результаты можно проверить на двух частных слу­чаях. Если H12=H21=0, то получается EI=H11 и EII=H22. А это бесспорно правильно, потому что тогда уравнения (7.16) и (7.17) не связаны и каждое представляет состояние с энер­гией H11 и H22. Далее, положив H11=H22=E0 и H21=H12=-А, придем к найденному выше решению:

еI=е0и еII0-а.

В общем случае два решения ЕI и ЕII относятся к двум состояниям; мы их опять можем назвать состояниями

У этих состояний С1 и С2 будут даваться уравнениями (7.18) и (7.19), где а1 и а2 еще подлежат определению. Их отношение дается либо формулой (7.23), либо (7.24). Они должны также удовлетворять еще одному условию. Если известно, что си­стема находится в одном из стационарных состояний, то сумма вероятностей того, что она окажется в |1> или |2>, должна равняться единице. Следовательно,

или, что то же самое,

Эти условия не определяют а1 и а2 однозначно: остается еще произвол в фазе, т. е. в множителе типа еid. Хотя для а можно выписать общие решения, но обычно удобнее вычислять их в каждом отдельном случае.

Вернемся теперь к нашему частному примеру молекулы аммиака в электрическом поле. Пользуясь значениями Н11, H22 и Н12 из (7.14) и (7.15), мы получим для энергий двух ста­ционарных состояний выражения

Эти две энергии как функции напряженности x электрического поля изображены на фиг. 7.2.

Фиг. 7,2. Уровни энергии молекулы аммиака в электрическом поле.