Выбрать главу

Вы видите, что это похоже на (7.9), но появился добавочный член от электрического поля. Равным образом, вычитая урав­нения (7.36), получаем

Вопрос теперь в том, как решить эти уравнения. Это труд­нее, чем прежде, потому что x зависит от t; и действительно, при общем x (t) решение не представимо в элементарных функ­циях. Однако, пока электрическое поле мало, можно добиться хорошего приближения. Сперва напишем

Если бы электрического поля не было, то, беря в качестве gI и gII две комплексные постоянные, мы бы получили пра­вильное решение. Ведь поскольку вероятность быть в состоя­нии |/ > есть квадрат модуля CI, а вероятность быть в состоя­нии |II> есть квадрат модуля СII, то вероятность быть в со­стоянии |I> или в состоянии |II> равна просто |gI|2 или |gII|2. Например, если бы система начинала развиваться из состояния |II> так, что gI было бы нулем, a |gII|2— единицей, то эти условия сохранились бы навсегда. Молекула из состояния |II> никогда бы не перешла в состояние |I>.

Польза записи решений в форме (7.40) состоит в том, что оно сохраняет свой вид и тогда, когда есть электрическое поле, если только mx меньше А, только gI и gII при этом станут мед­ленно меняющимися функциями времени. «Медленно меняю­щиеся» означает медленно в сравнении с экспоненциальными функциями. В этом весь фокус. Для получения приближен­ного решения используется тот факт, что gI и gII меняются медленно.

Подставим теперь СI из (7.40) в дифференциальное уравне­ние (7,39), но вспомним, что gI тоже зависит от t. Имеем

Дифференциальное уравнение обращается в

Равным образом уравнение для dCII/dt обращается в

Обратите теперь внимание, что в обеих частях каждого урав­нения имеются одинаковые члены. Сократим их и умножим первое уравнение на

а второе на

. Вспоминая, что (EI- eii)=2А=hw0, мы в конце концов получаем

Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени, умноженная на вторую переменную; про­изводная от второй — такая же функция от времени, умножен­ная на первую. Хотя эти простые уравнения в общем не реша­ются, но в некоторых частных случаях мы решим их.

Нас, по крайней мере сейчас, интересует только случай ко­леблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для gI и gII обратятся в

(it

И вот если x0 достаточно мало, то скорости изменения gI и gII тоже будут малы. Обе у не будут сильно меняться с t, особен­но в сравнении с быстрыми вариациями, вызываемыми экспо­ненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w0 или w-w0. Члены с частотой w+w0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сде­лать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в каче­стве приближения берут

Но даже и оставшиеся члены с показателями, пропорциональ­ными (w-w0), меняются быстро, если только w не близко к w0. Только тогда правая сторона будет меняться достаточно мед­ленно для того, чтобы набежало большое число, пока интег­рируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w0.