Вы видите, что это похоже на (7.9), но появился добавочный член от электрического поля. Равным образом, вычитая уравнения (7.36), получаем
Вопрос теперь в том, как решить эти уравнения. Это труднее, чем прежде, потому что x зависит от t; и действительно, при общем x (t) решение не представимо в элементарных функциях. Однако, пока электрическое поле мало, можно добиться хорошего приближения. Сперва напишем
Если бы электрического поля не было, то, беря в качестве gI и gII две комплексные постоянные, мы бы получили правильное решение. Ведь поскольку вероятность быть в состоянии |/ > есть квадрат модуля CI, а вероятность быть в состоянии |II> есть квадрат модуля СII, то вероятность быть в состоянии |I> или в состоянии |II> равна просто |gI|2 или |gII|2. Например, если бы система начинала развиваться из состояния |II> так, что gI было бы нулем, a |gII|2— единицей, то эти условия сохранились бы навсегда. Молекула из состояния |II> никогда бы не перешла в состояние |I>.
Польза записи решений в форме (7.40) состоит в том, что оно сохраняет свой вид и тогда, когда есть электрическое поле, если только mx меньше А, только gI и gII при этом станут медленно меняющимися функциями времени. «Медленно меняющиеся» означает медленно в сравнении с экспоненциальными функциями. В этом весь фокус. Для получения приближенного решения используется тот факт, что gI и gII меняются медленно.
Подставим теперь СI из (7.40) в дифференциальное уравнение (7,39), но вспомним, что gI тоже зависит от t. Имеем
Дифференциальное уравнение обращается в
Равным образом уравнение для dCII/dt обращается в
Обратите теперь внимание, что в обеих частях каждого уравнения имеются одинаковые члены. Сократим их и умножим первое уравнение на
а второе на
. Вспоминая, что (EI- eii)=2А=hw0, мы в конце концов получаем
Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени
Нас, по крайней мере сейчас, интересует только случай колеблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для gI и gII обратятся в
(it
И вот если x0 достаточно мало, то скорости изменения gI и gII тоже будут малы. Обе у не будут сильно меняться с t, особенно в сравнении с быстрыми вариациями, вызываемыми экспоненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w0 или w-w0. Члены с частотой w+w0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сделать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в качестве приближения берут
Но даже и оставшиеся члены с показателями, пропорциональными (w-w0), меняются быстро, если только w не близко к w0. Только тогда правая сторона будет меняться достаточно медленно для того, чтобы набежало большое число, пока интегрируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w0.