Такие «частицы» иногда именуют «магнонами».
§ 2. Две спиновые волны
Теперь мы хотели бы выяснить, что происходит, когда имеется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).
Фиг. 13.2. Состояния с двумя перевернутыми спинами.
Эти состояния можно, скажем, отмечать x-координатами тех двух узлов решетки, в которых оказались электроны с перевернутым спином. То, что на рисунке, можно обозначить |х2, х5>. В общем случае базисные состояния будут |хn, хm> — дважды бесконечная совокупность! При таком способе описания состояние | x4, х9> и состояние | х9, x4> совпадают, потому что каждое из них просто говорит, что в точках 4 и 9 спин перевернут; порядок их не имеет значения. Не имеет также смысла состояние | x4, х4> — такого просто быть не может. Любое состояние |y> мы можем описать, задав амплитуды того, что оно обнаружится в одном из базисных состояний.
Итак, Сm,n=<хm,хn|y> теперь означает амплитуду того, что система в состоянии |y> окажется в состоянии, когда у электронов, стоящих вблизи m-го и n-го атомов, спины смотрят вниз. Сложности, которые теперь возникнут, будут связаны не с усложнением идей,— это будут просто усложнения в бухгалтерии. (Одна из сложностей квантовой механики как раз и состоит в громоздкости бухгалтерии. Чем больше спинов перевернется, тем сложнее станут обозначения, тем больше будет индексов, тем страшнее будут выглядеть уравнения; но сами идеи вовсе не обязательно должны усложниться.)
Уравнения движения спиновой системы — это дифференциальные уравнения для Сn,m:
Пусть нам опять нужно найти стационарные состояния. Как обычно, производные по времени обратятся в Е, умноженное на амплитуду, a Cm,n, заменятся коэффициентами аm,n. Затем надо аккуратно рассчитать влияние Н на состояние с перевернутыми спинами т и п. Это сделать нетрудно. Представьте на минуту, что т далеко от n, так что не нужно думать, что будет, если ... и т. д. Обменная операция, производимая в точке хn, передвинет перевернутый спин либо к (n+1)-му, либо к (n-1)-му атому, так что имеется ненулевая амплитуда того, что теперешнее состояние получилось из состояния |хm, хn+1>, и амплитуда того, что оно произошло из состояния |хm, хn-1>. Но передвинуться мог и второй спин, так что не исключена и какая-то амплитуда того, что Сm,n питается от Сm+1,n или от Сm-1,n. Все эти эффекты должны быть одинаковы. Окончательный вид гамильтонова уравнения для Сm.n таков:
Это уравнение пригодно всегда, за исключением двух случаев. При m=n уравнения вообще нет, а при m=n±1 пара членов в (13.16) должна пропасть. Этими исключениями мы пренебрежем. Мы просто будем игнорировать тот факт, что некоторые из этих уравнений слегка меняются. Ведь как-никак кристалл считается бесконечным и слагаемых в гамильтониане бесчисленно много; пренебрежение некоторым их числом вряд ли сильно на чем-то скажется. Итак, в первом грубом приближении давайте позабудем об изменениях уравнений. Иными словами, допустим, что (13.16) верно при всех m и n, даже когда m и n стоят по соседству. Это самое существенное в нашем приближении.