Фиг. 13.10. Отрезок прямой с N молекулами.
В уравнении для амплитуды в точке 1 у вас не появится член для перехода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид
где s — целое число между 1 и N. (Берутся только положительные k, потому что каждое решение содержит и +k, и -k; перемена знака k опять дает то же состояние.) Для молекулы бутадиена N=4, так что имеется четверка состояний с
Уровни энергии можно теперь представить, пользуясь круговой диаграммой, похожей на бензольную. На сей раз возьмем полукруг, деленный на пять равных частей (фиг. 13.11).
Фиг. 13.11. Энергетические уровни бутадиена.
Точка внизу отвечает s=0, что не дает какого-либо состояния. То же самое справедливо для точки наверху, отвечающей s=N+1. Оставшиеся четыре точки дают четверку разрешенных энергий. Имеется четыре стационарных состояния, чего и следовало ожидать, судя по четырем базисным состояниям. В круговой диаграмме углы равны p/5, или 36°. Наинизшая энергия оказывается равной Е0 — 1,618A. (Каких только чудес не бывает в математике! Золотое сечение греков дает нам наинизшее энергетическое состояние молекулы бутадиена, как это следует из
нашей теории!)
Теперь уже ясно, как меняется энергия молекулы бутадиена, когда в нее вводят четверку электронов. Эта четверка заполнит два нижних уровня — каждый будет заполнен парой электронов с противоположными спинами. Полная энергия будет равна
Это выглядит вполне разумно. Энергия чуть пониже, чем просто у двух двойных связей, но связь не так сильна, как в бензоле. Во всяком случае, именно так химик анализирует некоторые органические молекулы.
Но в его распоряжении есть не только энергии, но и амплитуды вероятности. Зная амплитуды для каждого состояния и зная, какие состояния заполнены, он может сообщить нам, какова вероятность нахождения электрона в каком-нибудь месте молекулы. Те места, где пребывание электрона более вероятно, вступают в игру при таких химических замещениях, которые требуют, чтобы электрон обслуживал и другую группу атомов. Другие же места молекулы участвуют в таких замещениях, при которых молекула имеет тенденцию передать системе еще один электрон.
Подобные же идеи могут помочь нам получить правильное представление даже о таких сложных молекулах, как хлорофилл, один из вариантов которого показан на фиг. 13.12.
Фиг. 13.12. Молекула хлорофилла.
Обратите внимание, что двойные и одиночные связи образуют длинное замкнутое кольцо с двадцатью интервалами.
Лишние электроны двойных связей могут бегать по этому кольцу. При помощи метода независимых частиц можно получить всю совокупность энергетических уровней. От переходов между этими уровнями возникают сильные линии поглощения, которые лежат в видимой части спектра и придают этой молекуле ее густой цвет. И другие сложные молекулы, такие, как ксантофилл, от которого листья получают красную окраску, можно изучить таким же точно способом.