Выбрать главу

Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством

Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропор­циональности перед экспонентной как раз равен единице, т. е.

Тогда (14.21) превращается в

Вместе с (14.22) это уравнение позволяет находить распреде­ление импульсов для любого состояния |y>.

Возьмем частный пример: скажем, когда электрон распо­ложен в некоторой области вокруг х=0. Пусть мы взяли вол­новую функцию вида

Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом

Функция плотности вероятности Р(х)это кривая Гаусса, по­казанная на фиг. 14.1.

фиг. 14.1. Плотность вероятности для волно­вой функции (14.24).

Большая часть вероятности сосредото­чена между х=+s и х=-s. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х) не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Dx равнялось вероят­ности обнаружить электрон в Dx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования

\ Р (х) dx=1, потому что вероятность обнаружить электрон

где попало равна единице. Мы находим, что К = (2ps2)-1/4.

Теперь найдем распределение по импульсу. Пусть j(p)

есть амплитуда того, что импульс электрона окажется равным р:

Подстановка (14.25) в (14.24) дает

что можно также переписать в форме

Сделаем теперь замену интеграл обратится в

Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:

Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:

где полуширина h распределения по р связана с полушириной а распределения по х формулой

Наш результат утверждает: если сделать распределение по х очень узким, взяв s малым, то h станет большим и распре­деление по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать h и s как некую меру неопределенности локализации импульса и коор­динаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Dр и Dx, то (14.33) обратится в

Интересно вот что: можно доказать, что при всяком ином

виде распределения по х или по р произведение DpDx не может

стать меньше, чем у нас получилось. Гауссово распределение

дает наименьшее возможное значение произведения средних

квадратичных. В общем случае