Таким же путем можно получить и Р21, и Р22. Матрица Р^ относительно базисной системы|1> и |2> есть
Мы снова убеждаемся, что слова оператор и матрица в квантовой механике практически взаимозаменяемы. Есть, конечно, легкие технические различия, как между словами «числительное» и «число», но мы не такие педанты, чтобы забивать себе этим голову. Так что будем именовать Р^ то оператором, то матрицей, независимо от того, определяет ли оно операцию или реально использовано для получения численной матрицы.
Теперь мы хотели бы кое на что обратить ваше внимание. Предположим, что физика всей системы молекулярного иона водорода сама по себе симметрична. Этого могло бы и не быть — это зависит, например, от того, что находится с нею рядом. Но если система симметрична, то с необходимостью должна быть справедлива следующая идея. Предположим, что вначале, при t=0, система находится в состоянии |1>, а через промежуток времени t мы обнаруживаем, что система оказалась в более сложном положении — в какой-то линейной комбинации обоих базисных состояний. Вспомните, что в гл. 6 (вып. 8) мы привыкли представлять «эволюцию во времени» умножением на оператор U^. Это означает, что система через мгновение (скажем для определенности, через 15 сек) окажется в каком-то ином состоянии.
Например, это состояние на Ц 2/3 может состоять из состояния |1> и на iЦ1/3 из состояния |2>, и мы бы написали
|y на 15-й секунде>=
Теперь спросим: что же произойдет, если вначале мы запустим систему в симметричном состоянии |2> и при тех же условиях подождем 15 сек? Ясно, что если мир симметричен (что мы и предполагаем), то обязательно получится состояние, симметричное с (15.4):
|y на 15-й секунде>=
Те же идеи схематично изображены на фиг. 15.2.
Фиг. 15.2. Если в симметричной системе чистое состояние |1> развивается во времени так, как показано в части (а), то чистое состояние |2> будет во времени развиваться так, как показано в части (б).
Итак, если физика системы симметрична относительно некоторой плоскости и мы рассчитали поведение того или иного состояния, то нам также известно поведение состояния, которое получилось бы после отражения исходного состояния в плоскости симметрии.
То же самое можно высказать чуть более общо, т. е. чуть более отвлеченно. Пусть Q^ — любая из множества операций, которые вы можете произвести над системой, не меняя физики. К примеру, за Q^ мы можем принять операцию отражения в плоскости, расположенной посредине между двумя атомами молекулы водорода. Или в системе с двумя электронами можно было бы под Q^ подразумевать операцию обмена двумя электронами. Третьей возможностью явилась бы в сферически симметричной системе операция поворота всей системы на конечный угол вокруг некоторой оси; от этого физика не изменится. Конечно, в каждом отдельном случае мы бы обозначали Q^ по-своему. В частности, через R^y (q) мы обычно будем обозначать операцию «поверни систему вокруг оси у на угол q». Под Q^ мы просто понимаем один из названных операторов или любой другой, который оставляет всю физическую ситуацию неизменной.
Оператор Q^ мы будем называть оператором симметрии для системы.
Вот вам еще примеры операторов симметрии. Если у нас имеется атом, а внешнее магнитное или внешнее электрическое поле отсутствует, то после поворота системы координат вокруг любой оси физическая система остается той же самой. Опять-таки молекула аммиака симметрична относительно отражения в плоскости, параллельной той, в которой лежат три атома водорода (пока нет электрического поля). Если есть электрическое поле, то при отражении надо было бы обратить и поле, а это меняет всю физическую задачу. Но пока внешнего поля нет, молекула симметрична.
Теперь рассмотрим общий случай. Положим, мы начали с состояния |y1>, а через некоторое время или под влиянием других физических условий оно превратилось в состояние |y2>. Напишем