[Посмотрите на формулу (15.4).] Теперь вообразите, что над всей системой мы проводим операцию Q^. Состояние |y1> преобразится в состояние |y'1>, которое также записывается в виде Q^|y1>. А состояние |y2> превращается в |y'2>=Q^|y2>. И вот, если физика симметрична относительно Q^ (не забывайте про это, если это отнюдь не общее свойство системы), тогда, подождав в тех же условиях то же время, мы должны получить
[Как в (15.5).] Но вместо |y'1> можно написать Q^|y1>, а вместо |y2> написать Q^ |y2>, так что (15.7) переписывается в виде
Теперь, если |y2> заменить на U^ |y1> [см. (15.6)], то получим
Нетрудно понять, что это значит. В отношении атома водорода это означает, что «отразить и после немного подождать» [правая часть (15.9)] — это то же самое, что «немного подождать, а после отразить» [левая часть (15.9)]. Они должны совпасть, если только U^ при отражении не меняется.
А поскольку (15.9) справедливо при любом исходном состоянии | y 1>, то на самом деле это уравнение для операторов
Это-то мы и хотели получить — математическую формулировку симметрии. Когда соблюдается (15.10), мы говорим, что операторы U^ и Q^ коммутируют. Тогда «симметрию» можно определить следующим образом: физическая система симметрична относительно операции Q^, когда Q^ коммутирует с U^ (с операцией прошествия времени). [На языке матриц произведение двух операторов равнозначно матричному произведению, так что (15.10) в системе, симметричной относительно преобразования Q^, выполняется и для матриц Q^ и U^.]
Кстати, поскольку для бесконечно малого времени 8 мы имеем [7=1 — iH^e/h, где H^ — обычный гамильтониан [см. гл. 6 (вып. 8)1, то легко видеть, что когда (15.10) выполнено, то выполнено и
Так что (15.11) есть математическая формулировка условий на симметричность физической ситуации относительно оператора Q^. Она определяет симметрию.
§ 2. Симметрия и ее сохранение
Прежде чем применять только что найденный результат, хотелось бы еще немного вникнуть в идею симметрии. Положим, что стечение обстоятельств таково, что после действия оператора Q^ на состояние получается опять то же состояние. Это очень частный случай, но все же допустим, что так сложилось, что состояние |y'>=Q^|y0>. физически совпадает с состоянием |y0>. Это значит, что |y'> равняется |y0>, если не считать некоторого фазового множителя. Как это себе представлять? Пусть, например, имеется ион H+2 в состоянии, которое мы когда-то обозначали |I>. У этого состояния имеется одинаковая амплитуда побывать в базисных состояниях |1> и |2>. Вероятности показаны столбиками на фиг. 15.3, а.
Фиг. 15.3. Состояние |I> и состояние P^|I>, получаемые отражением |I> в плоскости, проходящей посредине между атомами в ионе Н2+.
Если мы на состояние |I> подействуем оператором отражения Р^, он перевернет его, поменяв местами |1> с|2>, а |2> с|1>; получатся вероятности, показанные на фиг. 15.3,б. Перед нами опять состояние |I>. Если начать с состояния |II>, то вероятности до и после отражения будут выглядеть тоже одинаково. Правда, если посмотреть на амплитуды, то разница все же есть. У состояния |I> после отражения амплитуды останутся теми же, у состояния | //) они приобретут противоположный знак. Иными словами,
Если написать