Свободный гравитон является безмассовым и движется со скоростью света, так что мы никогда не сможем найти систему отсчёта, в которой бы он находился в покое. Следовательно, существует инвариантное понятие проектирования его спина на направление движения и направление, противоположное движению. Безмассовый гравитон должен появиться с двумя поляризациями или с двумя спиральностями и не более. В общем случае, поле симметричного тензора будет иметь более двух динамических степеней свободы. Следовательно, поле ранга 2 только с двумя степенями свободы не есть тензорное поле, и у нас появляется опасность потери Лоренц-инвариантности. Эта ситуация аналогична той, которая имеет место в электродинамике. Выход из этой дилеммы состоит в том, чтобы включить в теорию калибровочную инвариантность. Отсюда следует, что когда мы строим действие в пространстве Минковского для того, чтобы описать безмассовые гравитоны со спином 2, то мы будем должны ввести калибровочную симметрию для того, чтобы уменьшить число динамических степеней свободы до 2. Если мы не делаем этого, то квантовая теория не будет Лоренц-инвариантной. Действие, которое содержит необходимую калибровочную симметрию и в котором имеются до второй производной поля, есть действие Фирца - Паули [FiPa 39]. Этого оказывается достаточным для того, чтобы начать и продолжить построение общей теории относительности (см. краткое резюме во Введении). В конце концов, мы получаем Принцип Эквивалентности как результат калибровочной инвариантности. Калибровочная симметрия возникает с самого начала для того, чтобы квантовая теория свободного безмассового гравитона со спином 2 была лоренцевым инвариантом.
Сражение с бесконечностями
Не являлось секретом то, что объединение гравитации и квантовой механики должно быть сопряжено с огромными усилиями. Когда поле квантуется, каждая мода поля обладает энергией нулевой точки. Так как поле формируется бесконечным числом мод, вакуумная энергия квантового поля является бесконечной. От этой бесконечности легко отделаться нормальным упорядочиванием полевых операторов. Оправдание этому в том, что мы просто переопределяем нулевую точку масштаба энергии, который прежде всего является произвольным. Тем не менее, так как гравитация взаимодействует со всей энергией, то когда мы добавляем гравитацию, то мы не можем больше уйти от этого. Вакуумные флуктуации квантованных полей действительно порождают физические эффекты, так что даже если мы обрезаем некоторое количество мод, плотность энергии вакуума от энергии нулевых точек оставшихся мод может быть очень большой. Такая плотность вакуумной энергии будет появляться в теории гравитации как космологическая постоянная. Так как космологическая постоянная очень мала, то это составляет большую проблему [Wein 89].
Далее, константа гравитационного взаимодействия в единицах, где ℏ=𝑐=1, имеет размерность (энергия)-2. Теории, где константа взаимодействия имеет положительное значение, часто оказываются конечными, в то время как те теории, в которых константа является неопределённой величины, являются кандидатами на то, чтобы быть перенормируемыми. Теории с отрицательными значениями этих констант обычно имеют расходимости по всем местам, где требуется бесконечное число параметров для того, чтобы устранить все расходимости, и, следовательно, эти теории являются неперенормируемыми. Квантовая общая теория относительности попадает в эту последнюю категорию.
В процессе перенормировки, контрчлены порождаются для того, что сократить высокоэнергетические или ультрарелятивистские расходимости, которые встречаются в отдельных членах теории возмущений. Когда процесс перенормировки является успешным, контрчлены приводят к построению конечного эффективного действия, что может мыслиться как классическая полевая теория, которая содержит все квантовые эффекты (см., например, [Hatf 92]). Возможные контрчлены согласуются с симметриями исходного ”обнажённого” действия. Другими словами, внутренние симметрии сильно ограничивают типы контрчленов, которые могут порождаться и, следовательно, число соответствующих расходимостей. Таким образом, теории с большей симметрией, как правило, обладают лучшей сходимостью.
Имеется чрезвычайно много возможных контрчленов, которые согласуются с известными симметриями для пертурбативной квантовой гравитации, например, члены пропорциональные 𝑅², 𝑅μν𝑅μν, 𝑅³ и т.д. Лишь только была обнаружена необходимость введения ковариантных духов и стали известны ковариантные правила для вычисления членов теории возмущений до произвольного порядка ([DeWi 67а, DeWi 67b], [FaPo 67]), стало очевидным, что в полной мере будет иметь место закон Мёрфи для квантовой теории поля (если нет симметрии для того, чтобы ”убить” контрчлен, тогда будет иметь место расходимость), и теория наиболее вероятно будет неперенормируема. Проблеск надежды на таком пути появился, когда было показано, что чистая квантовая гравитация в однопетлевом приближении (первая квантовая поправка) является конечной [tHVe 74], [Kore 74]. Контрчлены для плотности лагранжиана есть
ℒ
(1)
=
√
𝑔
⎡
⎢
⎣
1
120
𝑅²
+
7
20
𝑅
μν
𝑅
μν
⎤
⎥
⎦
,
(K.4)
На классическом уровне эти контрчлены обращаются в нуль для чистой гравитации, так как тогда мы имеем 𝑅=0 и 𝑅μν=0. Тем не менее, нет основания для того, чтобы чистая однопетлевая квантовая гравитация являлась бы конечной. Основание для того, чтобы теория являлась бы конечной, состоит в том, что ℒ(1) может исчезать в однопетлевом приближении при переопределении метрики, отсюда следует, что её эффекты не являются физически наблюдаемыми. Напомним, что для чистой гравитации вариационный принцип
δℒ(0)
δ𝑔μν
=
𝑅
μν
-
1
2
𝑅𝑔
μν
,
(К.5)
который, используя Принцип Наименьшего Действия, порождает классические полевые уравнения для чистой гравитации. Если мы переопределим метрику следующим образом:
𝑔
'
μν
=
𝑔
μν
+
εδ𝑔
μν
,
δ𝑔
μν
∝
7
20
𝑅
μν
-
11
60
𝑅𝑔
μν
,
(К.6)
тогда
ℒ
(0)
(𝑔)
+
ℒ
(1)
(𝑔)
=
ℒ
(0)
(𝑔')
+
𝒪(ε²)
,
(К.7)
где 𝒪(ε²) - двупетлевые процессы, отсюда следует, что однопетлевая теория является конечной. Когда материальные поля взаимодействуют с гравитацией, однопетлевая теория не является более конечной, даже на классическом уровне.
Надежда состояла в том, что имелся некоторый вид скрытой симметрии, что делало результат в однопетлевом приближении конечным, и что эта симметрия сможет представить чисто гравитационный сектор конечной теории. Тем не менее, компьютерное вычисление двупетлевых поправок дало расходящийся результат [GoSa 86], разрушающий эту надежду. Недавние обзоры по ультрафиолетовым расходимостям можно найти в работах [Wein 79] и [Alva 89].