Выбрать главу

Давайте посмотрим на следующий порядок. Члены, показанные в (16.1.9), включают в себя произведения двух ℎ и φ, так что две прямых и две волнистых линии сходятся вместе в некоторой точке, как показано на рис. 16.1 (б). Имеются также члены, возникающие от разложения первого члена в соотношении (16.1.1), включающего в себя произведения трёх ℎ, соответствующие диаграммам, в которых три волнистых линии сходятся в точке, как показано на рис. 16.1 (в). Обилие неявных сумм по трём индексам приводит к членам, которые очень и очень громоздки, когда они записаны явным образом. Например, один из членов, в котором три волнистых кривых сходятся вместе, есть ℎμν,βμβνα; когда мы переводам это на язык импульсов и компонент поляризации, мы получаем члены, соответствующие всем перестановкам трёх гравитонов, например,

𝑎

𝑞

β

𝑎

𝑒

μν

𝑏

𝑒

μβ

𝑐

𝑞

α

𝑐

𝑒

μα

+

𝑏

𝑞

β

𝑏

𝑒

μν

𝑎

𝑒

μβ

𝑐

𝑞

α

𝑐

𝑒

μα

+

+

𝑏

𝑞

β

𝑏

𝑒

μν

𝑐

𝑒

μβ

𝑎

𝑞

α

𝑎

𝑒

μα

+… .

(16.1.12)

Эта сложность сопровождает одиночную вершину, которая всегда соответствует одной части амплитуды; когда мы соединяем эти выражения, как, например, при вычислении диаграммы, подобной показанной на рис. 16.2 (а), мы можем получить ни много ни мало как 108 членов.

16.2. Завершение теории: простой пример гравитационного излучения

В предыдущем разделе мы привели полное описание теории. Осталось продолжить вычисления соответствующих диаграмм для любых физических процессов в соответствии с теми же самыми правилами, которые используются в электродинамике. Характерные примеры некоторых простейших диаграмм были разрешены в лекции 4; например, амплитуда рассеяния при обмене одиночным гравитоном задаётся в соотношении (4.3.5). На практике, при соответствующей симметризации некоторых выражений необходима определённая тщательность, но при наличии некоторого опыта это становится довольно простым, и обозначения типа ”черты” очень полезны для того, чтобы избежать чрезмерных алгебраических вычислений.

В самом низком порядке теория завершается путём этого уточнения. Все процессы, подходящим образом описываемые ”древесными” диаграммами, не имеют трудностей для описания. "Древесными” диаграммами являются такие диаграммы, которые не содержат ни пузырей, ни замкнутых петлей типа изображённых на рис. 16.2. Такое название очевидным образом связывается с тем фактом, что ветви дерева никогда сами по себе не замыкаются.

В более высоких порядках, когда мы допускаем пузыри и петли в диаграммах, теория оказывается неудовлетворительной, так как в этом случае она приводит к глупым результатам. Методы лечения этой болезни оказываются успешными только для одно-кольцевых диаграмм. Для того, чтобы обсудить эти средства лечения, для нас было бы проще изучить вкратце теорию векторного мезона Янга - Миллса, которая вызывает такие же трудности, но с этими трудностями значительно проще работать. Некоторые из этих трудностей имеют дело с отсутствием унитарности некоторых сумм диаграмм. Мы обсудим группу соотношений, которые выполнены между различными видами диаграмм. Эти соотношения не имеют прямых тестов, связанных с экспериментами по гравитации, но некоторые из них оказываются привычными по работе с другими полевыми теориями.

Я не знаю, возможно ли развить подобное средство лечения для анализа мультикольцевых диаграмм. Я полагаю, что нет; другими словами, я полагаю, что теория неперенормируема. Является ли это существенным возражением против теории, когда мы утверждаем, что она является неперенормируемой, я не знаю.

Рис. 16.3.

Наиболее интересная из тех проблем, с которыми мы будем иметь дело, это, возможно, проблема излучения гравитационных волн. Давайте в качестве исходного примера рассмотрим излучение одиночного гравитона, следующего распаду некоторых подходящих частиц. Так как мы будем использовать скалярную теорию вещества, возможно будет наилучшим то, что мы рассматриваем некоторый распад скалярных частиц, таких как 𝐾→2π. Испускание низкочастотных гравитонов необходимо для того, чтобы сказать гравитационным образом внешнему миру, что распад произошёл, в основном так же, как фотон низкой энергии должен быть испущен при аналогичном распаде, когда некоторый заряд ускоряется. Вклад многих диаграммы, которые могут быть записаны так, что в них гравитон выходит из вершины распада, обычно много меньше, так что нам не нужды рассматривать этот случай сначала. В качестве упражнения могло бы быть полезным разрешить последние три диаграммы, показанные на рис. 16.3.

16.3. Излучение гравитонов при распаде частиц

Связь гравитонов с материей является настолько слабой, что поистине нет надежды пронаблюдать квантовые гравитационные эффекты, связанные с событиями, происходящими с элементарными частицами. В этом смысле вычисления, о которых мы говорим, что мы должны их делать, оказываются абсолютно не имеющими никакого отношения к практике. Тем не менее, мы предложили определённую теорию, и эти ненаблюдаемые процессы являются простейшими эффектами, которые наша теория предсказывает; они могут быть наблюдаемыми и важными в том случае, если взаимодействие будет сильнее.

Рис. 16.4.

Существует много одногравитонных диаграмм при распаде частицы. Для иллюстрации мы берём в рис. 16.4 а 𝑎→𝑏+𝑐. Амплитуда в вершине 𝑎-гравитона задаётся соотношением

-2λ

𝑒

μν

¹𝑝

μ

²𝑝

ν

-

1

2

η

μν

¹𝑝

α

²𝑝

α

-

𝑚²

,

(16.3.1)

где предшествующие верхние индексы 1 и 2 обозначают материальную частицу до и после вершины. После испускания частица 𝑎 движется с импульсом (𝑎𝑝-𝑘) к вершине распада, отсюда ²𝑝α=(𝑎𝑝-𝑘)α. Если мы положим, что амплитуда распада представляется величиной 𝐴, зависящей от импульса трёх частиц (𝑎,𝑏,𝑐) чьи траектории проникают в чёрный ящик, выражение для амплитуды есть

-2λ

𝑒

μν

𝑎

𝑝

μ

(

𝑎

𝑝-𝑘)

ν

-

1

2

η

μν

𝑎

𝑝

(

𝑎

𝑝-𝑘)

-𝑚

2

𝑎