Выбрать главу

Мы по-прежнему хотим выразить пройденное расстояние через время и ускорение, не пользуясь конечной скоростью. Мы получим это соотношение из выражений (1) и (2); с помощью одного из них мы найдем v и сможем поставить это полученное выражение вместо v в другом соотношении. Так,

s = 1/2 (v0 + v)∙t или v = v0 + at

следовательно,

s = 1/2 (v0 + v0 + at)∙t = 1/2 (2v0 + at)∙t = (2v0t)/2 + (att)/2

Таким образом,

sv0t + (1/2)∙at2

Это соотношение удобно для экспериментальной проверки и описывает движение с постоянным ускорением.

Если отсчет времени начинается с момента, когда движущееся тело находится в состоянии покоя, то начальная скорость равна нулю, (v0 = 0), и соотношение приобретает вид

s = (1/2)∙at2

Поскольку а постоянно, 1/2 а тоже постоянно, поэтому мы можем записать

s = (Постоянная)∙t2, или s ~ t2.

Таким образом, мы можем сказать: теория предсказывает, s ~ t2 для движения, которое начинается из состояния покоя и происходит с постоянным ускорением. Говоря «теория предсказывает», мы имеем в виду, что, исходя из некоторых предположений и используя аппарат логического вывода (включая методы математики), мы как бы выразили эти предположения в несколько иной, новой форме. Если результаты эксперимента согласуются с этой новой формой, мы можем прийти к выводу, что наши предположения (и наш аппарат) «верны» или «подтверждены». Тем не менее зачастую мы не можем быть уверены в том, что выбранные нами предположения дают единственно возможное правильное объяснение. Осторожнее было бы сказать, что пока наши предположения соответствуют фактам.

Если в опытах с падающими телами вы обнаруживаете, что расстояния и промежутки времени с достаточной точностью удовлетворяют соотношению s ~ t2, то можете сказать, что они удовлетворяют соотношению, предсказанному для движения с постоянным ускорением. Вы могли бы сказать, что падающие тела, по-видимому, движутся с постоянным ускорением. Производя опыты с шарами, скатывающимися вниз по наклонной плоскости, Галилей установил, что пройденные расстояния и промежутки времени довольно хорошо соответствуют соотношению s ~ t2. Иначе говоря, измеренные Галилеем величины находились в согласии с его предсказанием, основанным на предположении о постоянстве ускорения.

Заметим, что эксперименты не подтвердили правильность этой формулы для движения с постоянным ускорением. Сама формула по необходимости, в силу законов логики, верна для любого движения с неизменным ускорением. Эксперименты показывают лишь, что движение скатывающихся тел в согласии с формулой (вероятно) происходит с постоянным ускорением. Сопоставляя экспериментальные данные с этой формулой, мы можем узнать кое-что о свойствах природы.

Вывод формулы, о которой идет речь, распадается на следующие этапы:

Определение ускорения: мы придумали эту величину, выбрали для нее название и затем стали ею пользоваться.

Выбор для анализа движения с постоянным ускорением. Этот выбор — один из возможных подходов к изучению действительного движения падающих тел. После того как выбор сделан, он позволяет двигаться дальше с помощью алгебры. Делая такой выбор, мы ничего не узнаем о свойствах природы.

Алгебра — своего рода логический автомат. Математика не рождает научные факты, хотя и помогает обнаруживать их.

Предположение, основанное на доводах здравого смысла, согласно которому в качестве v- следует взять величину (v0 + v)/2. Это предположение можно подтвердить для движения с неизменным ускорением геометрическими соображениями Галлилея или методами математического анализа.

Снова алгебра

Результат: удобное для экспериментальной проверки соотношение, выведенное исходя из наших предположений.

(4) v2 = v20 + 2as [Соотношение в этой форме нам еще долго не потребуется. Этот раздел можно временно отложить.]