Можно непосредственно проверить это предположение [*].
* * *
[*] Полезно было бы посмотреть такой опыт. Струя из водяных капелек выпускается из форсунки и освещается вспышками света, которые повторяются с такой же частотой, как импульсы форсунки. Этот эффект можно наблюдать в кино при изображении вращающегося колеса телеги, когда промежуток времени между кадрами оказывается как раз достаточным для поворота колеса на угол, образуемый двумя спицами; при этом спицы движутся «все вместе» между кадрами, и изображение на экране кажется неподвижным. Колесо как бы проскальзывает не вращаясь. Если увеличить скорость вращения колеса на 10 % (или замедлить съемку, то будет казаться, что колесо вращается, но со скоростью, разной примерно 1/10 действительной скорости. В кино этот эффект нежелателен, однако в физике или технике такое прерывистое, или стробоскопическое, освещение часто используют, чтобы «заморозить», или замедлить, быстрое движение одинаковых предметов — спиц колеса или капелек воды. Подобное освещение можно использовать при изучении быстрых колебаний (например, звонка или струны скрипки). На фиг. 27 показана схема опыта с водяными капельками.
Фиг. 27. Стробоскопическое освещение потока водяных капелек.
Вода поступает из резервуара к небольшому стеклянному соплу по резиновой трубке, которая зажимается электромагнитом. Электромагнит, питаемый переменным током, сжимает трубку 120 раз в секунду (дважды за период переменного тока), в результате чего возникает струя из капелек, испускаемых с частотой 120 капелек в секунду. Струя освещается небольшим фонарем и располагается перед экраном, отбрасывая на него тень. При постоянном освещении струя кажется непрерывной. Если же между фонарем и струей расположить вращающийся непрозрачный диск с прорезью, то при освещении проходящими через прорезь вспышками света будут видны отдельные капельки. Диск с прорезью может приводиться во вращение синхронным двигателем, работающим от сети переменного тока. Тогда вспышки света будут синхронны с появлением капелек, и картина станет неподвижной. Для измерений на экран можно, кроме того, спроецировать прямоугольную сетку из проволоки.
В простом демонстрационном опыте можно рассматривать движение шариков или водяных капель перед классной доской, вычертить и проанализировать криволинейную траекторию движения. Вы можете проделать опыт и самостоятельно, скатывая шарик по наклонной плоскости, когда он совершает движение под действием некоторой доли силы тяжести. На фиг. 28 показана схема такого опыта.
Фиг. 28. Демонстрация и анализ движения тела, находящегося под действием некоторой доли силы тяжести.
а — шар катится по наклонной плоскости; б — траектория движения шара, записанная на бумаге.
Шарик движется поперек и одновременно скатывается вниз по наклонной плоскости, оставляя след при движении (для этого использована копировальная бумага). Чтобы произвести анализ движения, изобразите на листе бумаги, на котором вычерчена траектория движения, прямые с координатами
x2 = 2x1, x3 = 3x1
Измерьте y1, y2 и т. д. и проверьте, выполняются ли соотношения
y2 = 22y1, y2 = 32y1 и т. д.
* * *
На фиг. 26 показана фотография шарика, брошенного в воздух, полученная при помощи серии коротких световых вспышек, следующих через равные промежутки времени.
Фиг. 26. Траектория летящего тела, сфотографированного при помощи световых вспышек.
Произведите сами измерения по траектории на фотографии, проведя линии А1В1, A2B2, A3B3. Вы увидите, что линии разделены равными промежутками: A1A2 = A2A3 =… Шарик поднимается по вертикали все медленнее и медленнее, а затем падает все быстрее и быстрее; в перемещении же по горизонтали он движется, не ускоряясь и не замедляясь. Горизонтальное движение летящего шарика остается неизменным.
Галилей знал об этом свойстве движущихся предметов и дал эти представления Ньютону. В течение многих столетий до него большинство ученых настаивало на том, что для поддержания постоянной скорости движения необходимо действие силы.