Выбрать главу

По отношению к большим силам, превосходящим предел упругости, разные тела можно грубо разделить на два класса – такие, как стекло, т.е. хрупкие, и такие, как глина, т.е. пластичные.

Если прижать палец к куску глины, он оставит отпечаток, в точности передающий даже сложные завитушки рисунка кожи. Молоток, если им ударить по куску мягкого железа или свинца, оставит четкий след. Воздействия нет, а деформация осталась – ее называют пластической или остаточной. Таких остаточных следов не удастся получить на стекле: если упорствовать в этом намерении, то стекло разрушится. Столь же хрупки некоторые металлы и сплавы, например чугун. Железное ведро под ударом молота сплющится, а чугунный котелок расколется.

О прочности хрупких тел можно судить по следующим цифрам. Чтобы превратить в порошок кусок чугуна, надо действовать с силой около 50–80 кГ на квадратный миллиметр поверхности. Для кирпича эта цифра падает до 1,5–3 кГ.

Как и всякая классификация, деление тел на хрупкие и пластичные в достаточной степени условно. Прежде всего, хрупкое при малой температуре тело может стать пластичным при более высоких температурах. Стекло можно превосходно обрабатывать, как пластический материал, если нагреть его до температуры в несколько сот градусов.

Мягкие металлы, как свинец, можно ковать холодными, но твердые металлы поддаются ковке лишь в сильно нагретом, раскаленном виде. Повышение температуры резко увеличивает пластические свойства материалов.

Одной из существенных особенностей металлов, которые сделали их незаменимыми конструкционными материалами, является их твердость при комнатных температурах и пластичность при высоких: раскаленным металлам легко можно придать требуемую форму, а при комнатной температуре изменить эту форму можно лишь очень значительными силами.

Существенное влияние на механические свойства оказывает внутреннее строение материала. Понятно, что трещины и пустоты ослабляют видимую прочность тела и делают его более хрупким.

Замечательна способность пластически деформируемых тел упрочняться. Одиночный кристалл металла, только что выросший из расплава, очень мягок. Кристаллы многих металлов настолько мягки, что их легко согнуть пальцами, но… разогнуть такой кристалл не удастся. Произошло упрочнение. Теперь этот образец удастся пластически деформировать лишь существенно большей силой. Оказывается, пластичность есть не только свойство материала, но и свойство обработки.

Почему инструмент готовят не литьем металла, а ковкой? Причина понятна – металл, подвергшийся ковке (или прокату, или протяжке), много прочнее литого.

Сколько бы ни ковать металл, мы не сумеем поднять его прочность выше некоторого предела, который называют пределом текучести. Для стали этот предел лежит в интервале 30–50 кГ/мм2.

Эта цифра означает следующее. Если на проволоку миллиметрового сечения подвесить пудовую гирю (ниже предела), то проволока начнет растягиваться и одновременно упрочняться. Поэтому растяжение быстро прекратится – гиря будет спокойно висеть на проволоке. Если же на такой проволоке подвесить двух-трехпудовую гирю (выше предела текучести), то картина будет иной. Проволока будет непрерывно тянуться (течь), пока не разорвется. Еще раз подчеркнем, что механическое поведение тела определяется не силой, а напряжением. Проволока сечением в 100 кв. микрон будет течь под действием груза 30–50·10−4 кГ, т.е. 3–5 Г.

Твердость

Прочность и твердость не идут друг с другом об руку. Веревочный канат, лоскут сукна, шелковая нить могут обладать весьма большой прочностью – нужно значительное напряжение, чтобы разорвать их. Разумеется, никто не скажет, что веревка и сукно – твердые материалы. И наоборот, прочность стекла невелика, а стекло – твердый материал.

Понятие твердости, которым пользуются в технике, заимствовано из житейской практики. Твердость – это противодействие внедрению. Тело твердое, если его трудно процарапать, трудно оставить на нем отпечаток. Определения эти могут показаться читателю несколько туманными. Мы привыкли к тому, что физическое понятие выражают числом. Как же это сделать в отношении твердости?

Один весьма кустарный, но в то же время практически полезный способ уже давно используется минералогами. Десять определенных минералов располагают в ряд. Первым стоит алмаз, за ним следует корунд, далее – топаз, кварц, полевой шпат, апатит, плавиковый шпат, известковый шпат, гипс и тальк. Ряд подобран следующим образом: алмаз оставляет царапину на всех минералах, но ни один из этих минералов не может процарапать алмаз. Это и значит, что алмаз самый твердый минерал. Твердость алмаза оценивается числом 10. Следующий в ряду за алмазом корунд тверже всех других нижестоящих минералов – корунд может их процарапать. Корунду присваивают число твердости 9. Числа 8, 7 и 6 присвоены соответственно топазу, кварцу и полевому шпату на тех же основаниях. Каждый из них тверже (т.е. может нанести царапину), чем все нижестоящие минералы, и мягче (сам может быть процарапан) минералов, имеющих большие числа твердости. Самый мягкий минерал – тальк – имеет одну единицу твердости.