Мы приводили выше значения амплитуд звукового колебания для громкого разговора. Амплитуда скорости равнялась 0,02 см/с. 1 см3 воздуха весит около 0,001 г. Таким образом, плотность энергии равняется
Пусть колеблется источник звука. Он излучает звуковую энергию в окружающий воздух. Энергия как бы «течет» от звучащего тела. Через каждую площадку, расположенную перпендикулярно к линии распространения звука, за секунду протекает определенное количество энергии. Эта величина называется потоком энергии, прошедшим через площадку. Если, кроме того, взята площадка в 1 см2, то протекшее количество энергии называют интенсивностью звуковой волны.
Нетрудно видеть, что интенсивность звука I равна произведению плотности энергии w на скорость звука с. Представим цилиндрик высотой 1 см и площадью основания 1 см2, образующие которого параллельны направлению распространения звука. Содержащаяся внутри такого цилиндра энергия w будет полностью покидать его через время 1/с. Таким образом, через единицу площади за единицу времени пройдет энергия w/(1/c), т.е. wc. Энергия как бы сама движется со скоростью звука.
При громком разговоре интенсивность звука вблизи собеседников будет примерно равна (мы воспользуемся числом, полученным выше) 2·10−7·3·104 = 0,006 эрг/(см2·с).
Ослабление звука с расстоянием
От звучащего инструмента звуковая волна распространяется, конечно, во все стороны.
Проведем мысленно около источника звука две сферы разных радиусов. Разумеется, энергия звука, проходящая через первую сферу, пройдет и через вторую шаровую поверхность. Если обозначить интенсивность звука через I, то энергию волны, проходящей через сферу, можно записать так: I·4πr2, так как 4πr2 – это площадь поверхности сферы радиуса r. Если энергия не потерялась по пути от первой сферы ко второй, то I1·4πr12 = I2·4πr22. Значит, интенсивности I2 и I2 волны на расстояниях r1 и r2 от источника звука относятся друг к другу обратно пропорционально квадратам расстояний. Так как интенсивность звука пропорциональна плотности энергии, то интенсивность, как и плотность энергии, пропорциональна квадрату амплитуды колебания. Отсюда следует, что амплитуды волны на расстояниях r1 и r2 от источника звука относятся друг к другу обратно пропорционально расстоянию. Интенсивность звука убывает обратно пропорционально квадрату расстояния от источника, а амплитуда обратно пропорциональна расстоянию в первой степени. На самом же деле звук убывает несколько быстрее, так как часть энергии поглощается по пути. Это происходит из-за того, что при колебании частиц среды некоторая часть энергии будет затрачена на преодоление вязкого трения. Однако эти потери относительно невелики, и главная причина того, что на далеком расстоянии мы слышим хуже, чем на близком, – это закон обратных квадратов.
Громко и тихо
Органы чувств человека во многих отношениях совершеннее самых лучших приборов. Это справедливо и для слуха. Мы способны воспринимать в виде звука волны с интенсивностью от 10−9 эрг/(см2·с) до 104 этих единиц интенсивности. Таким образом, сильнейший звук отличается от слабейшего в десять триллионов раз.
Что же представляет собой тишайший звук, который человек способен воспринять? Чуть слышный шорох создает на барабанной перепонке давление, равное 2·10−4 дин/см2, т.е. примерно двум десятимиллионным долям грамма. Лучшие микровесы не обладают такой чувствительностью, как ухо человека.
Если звук несет энергию больше 104 эрг/(см2·с), то человек уже не слышит звука, но испытывает болевое ощущение. Давление на барабанную перепонку достигает при этом 0,2 Г/см2. Ухо болезненно воспринимает именно волну давлений, т.е. быстро чередующиеся толчки сжатий и разрежений. Если же на указанную величину 0,2 Г возрастает постоянное давление воздуха, то ухо этого, разумеется, «не заметит». Нормальное атмосферное давление, равное примерно 1 кГ/см2, увеличится больше чем на 0,2 Г уже тогда, когда вы спуститесь со второго этажа на улицу.