Если масса газа неизменна, то, уменьшая объем, мы в соответствующее число раз увеличиваем плотность. Значит, давление газа в таком закрытом сосуде будет обратно пропорционально объему. Или, иными словами, произведение давления на объем должно быть неизменным:
pV = const.
Этот простой закон был открыт английским физиком Бойлем и французским ученым Мариоттом. Закон Бойля – Мариотта – один из первых количественных законов в истории физической науки. Разумеется, он имеет место при неизменной температуре.
По мере сжатия газа уравнение Бойля – Мариотта выполняется все хуже. Молекулы приближаются, взаимодействие между ними начинает сказываться на поведении газа.
Закон Бойля и Мариотта справедлив в тех случаях, когда вмешательство сил взаимодействия в жизнь молекул газа совершенно незаметно. Поэтому о законе Бойля – Мариотта говорят как о законе идеальных газов.
Прилагательное «идеальный» звучит несколько забавно по отношению к слову «газ». Идеальный – это значит совершенный, такой, что лучше быть не может.
Чем проще модель или схема, тем идеальнее она для физика. Упрощаются расчеты, легкими и ясными становятся объяснения физических явлений. Термин «идеальный газ» относится к простейшей схеме газа. Поведение достаточно разреженных газов практически неотличимо от поведения идеальных газов.
Сжимаемость жидкостей гораздо меньше, чем сжимаемость газов. В жидкости молекулы уже находятся в «соприкосновении». Сжатие состоит лишь в улучшении «упаковки» молекул, а при очень больших давлениях – в спрессовке самой молекулы. Насколько силы отталкивания затрудняют сжатие жидкости, видно из следующих цифр. Повышение давления от одной до двух атмосфер влечет за собой уменьшение объема газа вдвое, в то время как объем воды изменяется на 1/20 000, а ртути – всего на 1/250 000.
Даже огромное давление на глубинах океана неспособно сколько-нибудь заметно сжать воду. Действительно, давление в одну атмосферу создается столбом воды в десять метров. Давление под слоем воды в 10 км равно 1000 атмосфер. Объем воды уменьшается на 1000/20 000, т.е. на 1/20 долю.
Сжимаемость твердых тел мало отличается от сжимаемости жидкости. Это и понятно – в обоих случаях молекулы уже соприкасаются, и сжатие может быть достигнуто лишь за счет дальнейшего сближения уже сильно отталкивающихся молекул. Сверхвысокими давлениями в 50–100 тысяч атмосфер удается сжать сталь на 1/1000, свинец – на 1/7 долю объема.
Из этих примеров видно, что в земных условиях не удается сколько-нибудь значительно сжать твердое вещество.
Но во Вселенной есть тела, где вещество сжато несравненно сильнее. Астрономы открыли существование звезд, плотность вещества в которых доходит до 106 г/см3. Внутри этих звезд – их называют белыми карликами («белые» – по характеру светимости, «карлики» – из-за относительно малых размеров) – должно поэтому иметь место огромное давление.
Изменение давления с высотой
С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на гору на 8 мм. Вполне естественно падение давления воздуха с увеличением высоты. Ведь наверху на прибор уже давит меньший столб воздуха.
Если вы летали в самолете, то знаете, что на передней стенке кабины помещен прибор, показывающий с точностью до десятков метров высоту, на которую поднялся самолет. Прибор называется альтиметром. Это обычный барометр, но проградуированный на значения высот над уровнем моря.
Давление падает с возрастанием высоты; найдем формулу этой зависимости. Выделим небольшой слой воздуха площадью в 1 см2, расположенный между высотами h1 и h2. В не очень большом слое изменение плотности с высотой мало заметно. Поэтому вес выделенного объема (это цилиндрик высотой h2 − h1 и площадью 1 см2) воздуха будет mg = ρ(h2 − h1)g. Этот вес и дает падение давления при подъеме с высоты h1 на высоту h2. То есть
Но по закону Бойля – Мариотта плотность газа пропорциональна давлению. Поэтому
Слева стоит доля, на которую возросло давление при снижении с h2 до h1. Значит, одинаковым снижениям h2 − h1 будет соответствовать прирост давления на один и тот же процент.