Выбрать главу

На спектральную звуковую кривую влияет и интонация, которая может быть весьма различной у одного и того же человека. После консультации у врача больной язвой желудка возвращается домой.

– Доктор сказал резать! Резать? – спрашивает бедняга у жены.

Одинаковые слова звучат по-разному. Изменением одной лишь интонации меняется смысл фразы. Как отражается интонационная окраска на звуковом спектре? Это интересный для филолога вопрос, который только в последнее время начали исследовать.

Много новых проблем в языкознании всплыла наружу, когда начались систематические работы по машинному переводу с одного языка на другой. Прежде чем научить машину производить какие-либо операции, надо до самого донышка понять сущность задачи тому, кто составляет программу для машины. Кстати говоря, не только в филологии, но и во множестве других областей эта необходимость привести в строжайший порядок свои собственные мысли приносила и будет приносить исследователям пользу.

Занявшись обучением машины переводу, математики-филологи обнаружили, что раньше надо получше самим разобраться в том, как и почему мысль находит свое выражение словами. Надо ответить, почему мы говорим так, а не иначе, почему порядок следования слов в одних случаях фиксирован, а в иных – произволен. Скажем, «он взял чашку со стола», но не «чашку он взял стола». В то же время ничуть не хуже первого варианта – «он взял со стола чашку». Машина должна знать, что второй вариант плохой. Но в процессе ее обучения перед нами, естественно, встает вопрос, а чем же хуже второй вариант?

В поисках удобного языка, обладающего исчерпывающими возможностями для передачи самых сложных мыслей, филологи установили, что правила такого языка могут быть во много раз проще правил живой речи. Сразу же возник вопрос, имеются ли основания для бесконечного числа оттенков, которые могут быть приданы одной и той же мысли игрой словами?

Изучая законы конструирования фраз, филологи приходят к заключению, что природу нельзя упрекнуть в расточительстве. Богатство языка, гибкость речи и многообразие представлений одной мысли являются, как оказывается, способом разгрузки памяти. В ряде последних работ показано, что упрощение языка привело бы к необходимости увеличения «глубины» памяти. Как бы это пояснить?

В языке с упрощенными и однозначными правилами речи нужное слово находится в ящичке мозга, к которому ведет один-единственный путь. Где-то в одном из тупиков лабиринта лежит нужная вещь. Путь к ней только через один вход, остальные ворота не ведут к цели; и, следуя по первому коридору, надо сделать поворот направо, в третий переулок, другие повороты к цели не приведут.

В реальном языке нужное слово спрятано не глубоко; к ящичку, где оно хранится, ведет множество путей. Насколько упрощается поиск нужной вещи, если можно войти в лабиринт через несколько ворот и наткнуться на нужную вам вещь сразу!

Глубина памяти здесь – отрицательное свойство (лучше было бы филологам изменить терминологию, со словом «глубина» ассоциируются комплименты). Она характеризуется «числом поворотов», которые приходится сделать, чтобы добраться до нужного слова. Теория, с которой я познакомился, утверждает, что наш язык (таков, как он есть) позволяет обходиться наименее глубокой памятью.

– Чрезвычайно увлекательные исследования, но при чем здесь физики? – спросит читатель.

Право, чтобы разобраться в проблеме, надо обладать хорошим физическим мышлением. Математическая филология может быть отнесена к естествознанию по той причине, что эти исследования неразрывно связаны с проблемами параллелей в работе мозга и электронно-счетной машины.

…науки о Земле. Он рассказывает о тропических закатах и полярных сияниях, о необитаемых атолловых островах и живописных оазисах в пустыне. Его слушают, ему завидуют. Шутка ли, где только человек не побывал, чего только не видел этот географ-путешественник! А что интересного может рассказать физик, если он ограничен стенами лаборатории?

Такая точка зрения казалась, вполне естественной. И правда, еще не так давно географы-путешественники были монополистами в описаниях сказочных красот земли и необыкновенных и загадочных явлений природы. Но времена переменились! Теперь физики подымаются на аэростатах, плавают на подводных лодках, опускаются в кратеры вулканов. Они зимуют на Северном полюсе, проникают в глубь Антарктиды, совершают кругосветные плавания. А географы? Им приходится проводить время в тиши научных кабинетов, для того чтобы усиленно изучать физику. Иначе они рискуют тем, что физики не будут брать их с собой в милые их сердцу экспедиции.

Пришло время, когда лабораторией физика стал весь земной шар. И опыты в этой лаборатории иногда связаны с такими экзотическими путешествиями, которым могут позавидовать знаменитые первооткрыватели. Пожалуй, морская геофизика в этом отношении вне конкуренции.

На гребнях океанских волн показалось маленькое деревянное судно под парусами! Нет, это не остатки пиратской флотилии XIX века. Чтобы изучить магнитное поле нашей планеты, физики на антимагнитной шхуне «Заря» бороздят Мировой океан. Физика, проплававшего на «Заре», не удивишь никакими рассказами о диковинках заморских стран, о тропических ливнях и тропической жаре, о нравах туземцев на островах Полинезии.

А не заманчивы ли кругосветные путешествия «Витязя» – этой огромной плавучей лаборатории? Физики являются обычно не только участниками походов «Витязя», но диктуют капитану маршруты в соответствии со своими научными планами. Планы же эти многообразны и увлекательны.

Ограничусь лишь одним примером.

Океанские глубины «достигают» высот Эвереста. Покоится или движется вода на дне океана, отдаленном на многие километры от земной поверхности? Может ли частица воды из таких глубин подняться на поверхность или нет? А если может, то сколько времени на это ей понадобится?

«Что за странные вопросы? – спросит читатель. – Кому это нужно знать?»

Еще в сороковых годах отходы атомной промышленности было предложено сбрасывать в глубины океана. Но что, если воды вынесут эту радиоактивную отраву с глубин на поверхность? Что случится с рыбой? А с человеком, съевшим эту рыбу?

Очевидно, вопрос о времени, нужном на такой подъем с глубины на поверхность, является решающим. Если это время оказалось бы значительно больше времени распада радиоактивных атомов, то отходы, достигшие поверхности, были бы уже безвредными. А если нет? Кто отважится тогда сбрасывать радиоактивные отходы в океан?

Так родился интерес к проблеме глубинной циркуляции вод в океанах. Потрудиться пришлось как физикам-экспериментаторам, так и теоретикам.

Экспериментаторам надо было учиться измерению скорости течений на глубинах в несколько тысяч метров да к тому же заранее учитывать, что эти скорости очень невелики – всего лишь несколько сантиметров в секунду. Так как точные измерения трудны, а то и невозможны, сотрудничество теоретиков в расчетах тех же скоростей глубинных вод необходимо. Ответы физиков на поставленный вопрос были жизненно важны для судьбы океана.

Экспериментаторы изобрели поплавки нейтральной плавучести, которые опускались на большие глубины. По их перемещению в течение длительного периода времени удалось определить, что на больших глубинах возможны интенсивные движения вод. Так был впервые зажжен красный свет сбросу радиоактивных отходов в глубь океана. Теоретики хотя и не пришли к вполне согласующимся между собой результатам, однако получили следующий наиболее важный вывод: частицы воды могут подняться с глубин океана на его поверхность за время, сравнимое с временем распада наиболее активных элементов в продуктах отходов.

Итак, теоретики и экспериментаторы установили такой неоспоримый факт: опасность заражения океана в случае использования его как кладбища для радиоактивных отходов существует.