Спомнете си, че една цивилизация от III тип, която достига галактични мащаби в своята енергийна употреба, потребява 10 милиарда пъти повече енергия от една цивилизация от II тип, чието потребление се основава на енергията на една-единствена звезда. А една цивилизация от II тип на свой ред потребява 10 милиарда пъти повече енергия от една цивилизация от I тип, чието потребление се основава на енергията на една-единствена планета. За период с продължителност между сто или двеста години нашата немощна цивилизация от 0 тип ще достигне статуса на цивилизация от I тип.
Като се има предвид това проектиране на бъдещето, ние сме много, много далеч от възможността да достигнем енергията на Планк. Физиците са на мнение, че на изключително къси разстояния, при разстоянието на Планк от 10-33 сантиметра, пространството не е празно или гладко, а става „пенливо“. То се пени от съвсем малки мехурчета, които постоянно изникват от нищото, сблъскват се с други мехурчета, а после изчезват обратно във вакуума. Тези мехурчета, които се стрелкат навън-навътре из вакуума, са „виртуални вселени“, които приличат много на виртуалните частици на електроните и антиелектроните, които изскачат от нищото и после изчезват.
Обикновено тази квантова пространствено-времева „пяна“ е напълно невидима за нас. Тези мехурчета се образуват на толкова къси разстояния, че не можем да ги наблюдаваме. Но квантовите физици изказват предположението, че ако концентрираме достатъчно енергия в една-единствена точка, докато достигнем енергията на Планк, тези мехурчета могат да станат големи. Тогава бихме видели пространствено-времевото разпенване от съвсем малки мехурчета, като всяко мехурче е дупка-червей, свързана с „бебе-вселена“.
В миналото тези бебета-вселени били смятани за интелектуален куриоз, за странно следствие от чистата математика. Но сега физиците сериозно смятат, че нашата вселена може да е започнала първоначално съществуването си като една от тези бебета-вселени.
Подобно мислене е най-обикновено теоретизиране, но законите на физиката допускат възможността да бъде отворена дупка в пространството чрез концентрирането на достатъчно енергия в една-единствена точка, докато достигнем пространствено-времевата пяна и се появят дупки-червеи, свързващи нашата вселена с една бебе-вселена.
Отварянето на дупка в пространството, разбира се, би изисквало значителни пробиви в технологиите, но и в този случай това може да се окаже възможно за една цивилизация от III тип. Например, имало е обещаващи разработки в нещо, наречено „ускорител върху маса на Уейкфийлд“. Забележителен е фактът, че този атомен разбивач е толкова малък, че може да бъде поставен върху маса, но той е в състояние да генерира милиарди електронволта енергия. Ускорителят върху маса на Уейкфийлд работи, като изстрелва лазери върху заредени частици, които после се носят върху енергията на този лазер. Експерименти, извършени в Станфордския линеен ускорителен център, в лабораторията „Ръдърфорд Ейпълтън“ в Англия и в „Екол Политехник“ в Париж, показват, че огромните ускорения са възможни дори на малки разстояния, когато се използват лазерни лъчи и плазма за инжектирането на енергия.
Но през 2007 г. бил направен още един пробив, когато физиците и инженерите в Станфордския линеен ускорителен център, UCLA и USC демонстрирали, че можете да удвоите енергията на един огромен ускорител на частици в рамките само на един метър. Те започнали със сноп от електрони, които били изстреляни по тръба с дължина от две мили (около 3,6 км) в Станфорд, достигайки енергия от 42 милиарда електронволта. След това тези високоенергийни електрони били изпратени през „последващ инжектор“, който се състоял от плазмена камера, дълга само 88 сантиметра, където електроните придобили още 42 милиарда електронволта, удвоявайки своята енергия. (Плазмената камера е пълна с литиев газ. Докато електроните минават през газа, те създават плазмена вълна, която създава вълна. Тази вълна на свой ред се влива в задната част на електронния сноп и после го бута напред, придавайки му допълнителен тласък.) При това смайващо постижение физиците подобрили три хиляди пъти предишния рекорд за количеството енергия на метър, с която те биха могли да ускорят един електронен сноп. Като прибавя подобни „последващи инжектори“ към съществуващите ускорители, човек би могъл по принцип да удвои тяхната енергия почти безплатно.
Днес световният рекорд на един ускорител върху маса на Уейкфийлд е 200 милиарда електронволта на метър. Съществуват многобройни проблеми при измерването на този резултат на по-големи разстояния (от рода на поддържането на стабилността на снопа, докато лазерната енергия бъде напомпана в него). Но ако допуснем, че бихме могли да поддържаме равнище на мощност от 200 милиарда електронволта на метър, това означава, че ускорител, който е в състояние да достигне енергията на Планк, ще трябва да бъде дълъг 10 светлинни години. Това е напълно във възможностите на една цивилизация от III тип.