Всичко това се променя с появата на суперструнната теория, която постулира, че електронът и другите субатомни частици не са нищо друго освен различни вибрации на струна, които действат като съвсем малко кръгло ластиче. Ако човек удари кръглото ластиче, то вибрира в различни ладове, като всяка нота съответства на различна субатомна частица. По този начин суперструнната теория обяснява стотиците субатомни частици, които са открити досега в ускорителите на частици. На практика теорията на Айнщайн се очертава като една от най-ниските вибрации на струната.
Струнната теория бе приветствана като „теория на всичко“, като легендарната теория, която се е изплъзвала на Айнщайн през последните тридесет години от неговия живот. Айнщайн искал една-единствена, всеобхватна теория, която ще обобщава всички физични закони — теория, която ще му позволи „да чете мислите на Бога“. Ако струнната теория наистина обединява гравитацията с квантовата теория, тя представлява върховното постижение на науката, връщайки се мислено още преди две хиляди години, когато гърците са си задали въпроса от какво се състои материята.
Но странната особеност на суперструнната теория е, че струните могат да вибрират само в едно специфично измерение на континуума пространство-време. Те могат да вибрират само в десет измерения. Ако човек се опита да създаде струнна теория в други измерения, тя не издържа в математическо отношение.
Разбира се, нашата вселена е четириизмерна (с три измерения в пространството и едно във времето). Това означава, че другите шест измерения трябва да са колапсирали някак и да са се свили, подобно на петото измерение на Калуца.
Неотдавна физиците започнаха да обмислят сериозно как да докажат или да опровергаят съществуването на тези по-висши измерения. Може би най-простият начин за доказване на съществуването на по-висшите измерения би се състоял в това да се открият отклоненията от Нютоновия закон за гравитацията. В гимназията учим, че гравитацията на Земята намалява, докато навлизаме в открития космос. Или по-точно казано, гравитацията намалява заедно с квадрата на разделящото разстояние. Но това е така само защото живеем в триизмерен свят. (Представете си сфера, която обгръща Земята. Гравитацията на Земята прониква равномерно през повърхността на сферата, така че колкото по-голяма е тя, толкова по-слаба е гравитацията. Но тъй като повърхността на сферата се увеличава, подобно на квадрата на нейния радиус, силата на гравитацията, която е проникнала над повърхността на сферата, трябва да намалява подобно на квадрата на радиуса.)
Но ако Вселената имаше четири пространствени измерения, гравитацията трябваше да намалява като куба на разделящото разстояние. Ако Вселената имаше n пространствени измерения, гравитацията трябваше да намалява подобно на n–1 сила. Прочутият обратно-квадратен закон на Нютон е бил тестван с голяма точност на астрономически разстояния. Ето защо можем да изпращаме космически сонди, които се реят край пръстените на Сатурн със спираща дъха точност. Обратно-квадратният закон на Нютон не е бил тестван никога на малки разстояния в лабораторни условия, но неотдавна това започна да се прави.
Първият експеримент за тестване на обратно-квадратния закон на малки разстояния бе извършен в Колорадския университет през 2003 г. и даде отрицателни резултати. Очевидно няма нито една паралелна вселена, поне не и в Колорадо. Но този отрицателен резултат само изостри апетита на другите физици, които се надяват да извършат повторно този експеримент с по-голяма точност.