Выбрать главу

Във Въженото предизвикателство екипите трябва да произведат въжета, дълги 2 метра, които да не тежат повече от 2 грама и да пренасят 50 процента повече тегло от най-качественото въже от предишната година. Предизвикателството цели да стимулира изследванията в областта на разработването на материали с ниско тегло, които са достатъчно здрави, за да издържат напрежение по протежение на 100 000 километра в Космоса. Има награди на стойност 150 000 долара, 40 000 долара и 10 000 долара. (За да се подчертае трудността при справянето с това предизвикателство, през 2005 г. — първата година на състезанието, никой не спечели награда.)

Въпреки че един сполучлив космически асансьор може да революционизира космическата програма, подобни машини крият свои собствени рискове. Например, траекторията на летящите близо до Земята спътници се променя постоянно, докато те се движат в орбита около Земята (това се дължи на факта, че Земята се върти под тях). Това означава, че рано или късно спътниците ще се сблъскат с космическия асансьор със скорост от 18 000 мили (около 32 000 км) в час, което е достатъчно за скъсването на въжето. За да се предотврати такава катастрофа, в бъдеще или спътниците ще трябва да бъдат проектирани да включват малки ракети, така че да могат да извършат маневра около космическия асансьор; или пък въжето на асансьора може би трябва да бъде оборудвано с малки ракети за избягване на преминаващите покрай него спътници.

Сблъсъците с микрометеорити също са проблем, тъй като космическият асансьор ще бъде разположен доста над земната атмосфера, а обикновено тя ни пази от метеорите. Тъй като сблъсъците с микрометеори са непредсказуеми, космическият асансьор трябва да бъде изграден с добавена защитна система и може би дори с резервни системи, които да предупреждават за повреди. Проблеми могат да изникнат и от ефектите на турбулентните метеорологично-времеви модели на Земята като ураганите, приливните вълни и бурите.

Ефектът на прашката

Друг непознат досега способ за задвижването на един обект със скорост, близка до тази на светлината, е използването на ефекта на „прашката“. Когато изпраща космически сонди към външните планети, понякога NASA ги завърта около някоя съседна планета. Така тя използва ефекта на прашката, за да повиши тяхната скорост. По този начин NASA пести ценно ракетно гориво. Именно така космическият кораб „Вояджър“ успя да стигне до Нептун, който е разположен почти до самия край на Слънчевата система.

Принстънският физик Фрийман Дайсън предлага в далечното бъдеще да открием две неутронни звезди, които се въртят една около друга с голяма скорост. Като застанем съвсем близо до едната от тези неутронни звезди, можем да профучим около нея, след което ще бъдем запратени в Космоса със скорост, близка до една трета от скоростта на светлината. Фактически ще използваме гравитационното притегляне, за да ни придаде допълнителен тласък, така че почти да достигнем скоростта на светлината. На хартия това би могло да свърши работа.

Други предлагат да профучим около нашето собствено слънце, за да увеличим скоростта си до такава степен, че тя да се приближи до скоростта на светлината. Всъщност този метод е използван в „Стар Трек IV: Завръщане на Земята“, където екипажът на „Ентърпрайс“ отвлича един клингонски кораб и след това долита близо до Слънцето, за да преодолее светлинната бариера и да се върне назад във времето. Във филма „Когато световете се сблъскат“ Земята е заплашена от сблъсък с астероид и учените я отклоняват, като конструират гигантско виенско колело. Един ракетен кораб се спуска от виенското колело и достигайки висока скорост, профучава около долната част на колелото и се взривява в Космоса.

На практика обаче нито един от тези методи за използване на гравитационното притегляне за ускоряване на движението в Космоса няма да свърши работа. (Заради запазването на енергията, когато се спускаме по виенско колело и след това се издигаме отново по него, накрая се оказваме със същата скорост като тази, с която сме започнали движението и затова не печелим каквато и да е енергия. По същия начин, след като профучим около неподвижното Слънце, се оказваме със същата скорост като тази, с която сме започнали първоначално движението си.) Причината, поради която методът на Дайсън за използване на две неутронни звезди може да свърши работа, е, че неутронните звезди се движат много бързо. Космически кораб, който използва ефекта на прашката, получава енергията си от движението на една планета или звезда. Ако те са неподвижни, няма никакъв ефект на прашката.