Выбрать главу

Это ответственное задание, если верить историкам, было выполнено вполне успешно: качественно и в срок. Первыми частицами, у которых усмотрели волновые свойства, стали электроны. В «Фейнмановских лекциях» описан потрясающий опыт с прохождением электронов сквозь две щели. Мол, если не мешать им пролетать им сквозь две щели, то на сцинтилляционном экране за щелями получаются интерференционные полосы. Перекроешь одну щель – полосы пропадают. Попытаешься проследить, через какую щель пролетает электрон – полосы тоже пропадают… Очень это всё впечатляет читателей; одна беда – никто никогда таких опытов не делал. У электрона дебройлевская длина волны, понимаете, маленькая. Щелью для неё является зазор между атомами. Ну, прикиньте: как, для электронов, можно сделать экран всего с двумя щелями? Как можно перекрывать одну из них? Нанотехнологи, одно слово!

Дэвиссон и Джермер делали совсем другое – вполне возможное. Они направляли низковольтный пучок электронов ортогонально на полированный срез монокристалла никеля (с никелем у них особенно здорово получилось), и исследовали угловое распределение электронов, рассеиваемых кристаллом в обратную полусферу – за вычетом центрального створа, затенённого электронной пушкой. Обнаружились пики рассеяния, соответствовавшие брэгговской дифракции, т.е. резонансному отражению волн от параллельных атомных плоскостей, наклонённых к поверхности среза – причём, эти пики получались при подходящих энергиях пучка, т.е., теоретически, при подходящих резонансных длинах волн. Казалось бы – вот они, волновые свойства электронов, во всей своей красе! Но, прежде чем прыгать от восторга, давайте-ка посмотрим: а, может, и здесь о чём-то умолчали? Не в первый раз же! Смотрим… и видим… ну, полная жуть. Во-первых, авторы сказали не про все пики рассеяния, которые наблюдались. Самым сильным был широкий пик зеркального рассеяния, который наблюдался всегда – при любых энергиях пучка – и, значит, он не мог быть порождением брэгговской дифракции. Да и под другими углами были «лишние» пики рассеяния, которые никак не вписывались в концепцию этой дифракции. Далее: при уменьшении скорости падающих электронов, казалось бы, должна уменьшаться глубина их проникновения в кристалл, и, значит, должен уменьшаться эффективный рассеивающий объём кристалла, т.е. должна уменьшаться резкость дифракционных пучков. В действительности, всё происходит… наоборот! Ну, знаете, это уже совсем не похоже на брэгговскую дифракцию! Терпение, осталось чуть-чуть: если нанести на рассеивающую поверхность плёнку другого металла толщиной всего в два атомных слоя, то прежняя картина рассеяния практически исчезает, заменяясь картиной для этого другого металла. Какие же могут быть наклонные атомные плоскости при толщине в два атомных слоя? Совершенно ясно, что Дэвиссон и Джермер имели дело с поверхностным эффектом – и, конечно, не с брэгговской дифракцией, которая является эффектом объёмным. Что же это за поверхностный эффект? Да вроде как вторичная электронная эмиссия. При таком допущении здесь всё встаёт на свои места. Правда, никакими волновыми свойствами электронов тут и не пахнет…