Выбрать главу

Рис. 29. ФИЗИЧЕСКОЕ БРОУНОВСКОЕ ДВИЖЕНИЕ. КЛАССИЧЕСКИЕ ЗАРИСОВКИ ЖАНА ПЕРРЕНА

3 РАЗМЕРНОСТЬ, СИММЕТРИЯ, РАСХОДИМОСТЬ

Центральную роль в этой книге играют древние понятия размерности (т. е. количества пространственных измерений или степени многомерности) и симметрии. Кроме того, позже мы неоднократно столкнемся с различными симптомами расходимости.

ИДЕЯ РАЗМЕРНОСТИ

Во время кризиса 1875-1925 гг. математики осознали, что невозможно достичь истинного понимания неправильности и фрагментации (равно как правильности и связности), по-прежнему определяя размерность как число пространственных координат. Первый шаг в направлении строгого анализа был сделан Кантором в его письме к Дедекинду от 20 июня 1877 г., следующий — Пеано в 1890 г., а к середине 20-х гг. XX в. процесс благополучно завершился.

Как случается со всеми значительными интеллектуальными достижениями, результат этого процесса может иметь весьма различные интерпретации. Во всех попадавших мне на глаза математических исследованиях теории размерности подразумевается, что теория эта единственна и неповторима. Главным здесь, на мой взгляд, является то, что довольно расплывчатое понятие размерности, судя по всему, имеет много математических аспектов, которые не только принципиально различны, но еще и дают различные числовые значения этой самой размерности. То, что Уильям из Оккама говорил о сущностях, относится и к размерностям — не следует множить размерности без необходимости, однако от множественности размерностей нам никуда не деться. Евклид в свое время ограничился множествами, все существенные размерности которых совпадают — эти множества можно назвать размерностно-согласованными множествами. С другой стороны, различные размерности множеств, которым посвящена значительная часть этой книги, отказываются совпадать, т. е. эти множества размерностно-несогласованы.

Переходя от размерностей математических множеств к «эффективным» размерностям моделируемых этими множествами физических объектов, мы встречаемся с другой двусмысленностью, неизбежной и реально необходимой. И математические, и физические аспекты понятия размерности вкратце предваряются в данной главе.

ОПРЕДЕЛЕНИЕ ТЕРМИНА «ФРАКТАЛЬНЫЙ»

В нижеследующем тексте используются не определенные ранее математические термины, однако многие читатели, возможно, сочтут этот отрывок полезным для себя или хотя бы просто занимательным. Остальные же вольны его пропустить.

Это и последующие отступления от основной линии настоящего эссе я буду помечать особыми скобками — < и >. Последний символ намеренно сделан более заметным, чтобы любой затерявшийся в отступлениях и желающий двигаться дальше читатель мог с легкостью его найти. Открывающая скобка не столь привлекает внимание: мне не хотелось, чтобы отступления слишком сильно выделялись в тексте. В отступлениях часто можно встретить предварительное упоминание материала, обсуждаемого в последующих главах.

< Размерностную несогласованность основных фракталов можно использовать для трансформации интуитивного понятия фрактала в строго математическое. Я решил сосредоточиться на двух определениях, каждое из которых ставит в соответствие всякому множеству в евклидовом пространстве — каким бы «патологическим» оно ни выглядело — некое вещественное число, которое и с интуитивной, и с формальной точки зрения имеет полное право называться размерностью этого множества. Более неформальным из двух является определение топологической размерности по Брауэру, Лебегу, Менгеру и Урысону. Эта размерность описана в соответствующем разделе главы 41. Обозначим ее через DT Определение второй размерности было сформулировано Хаусдорфом в [203] и приведено в окончательный вид Безиковичем. Ее описание можно найти в главе 39, а обозначать ее мы будем через D.

< В евклидовом пространстве RE величины размерностей DT и D заключены в промежутке от 0 до E. Однако на этом их сходство заканчивается. Размерность DT всегда является целым числом, в то время как для размерности D это вовсе не обязательно. Эти две размерности не обязательно должны совпадать, они должны лишь удовлетворять неравенству Спилрайна (см. [231], глава 4)