Выбрать главу

Вся беда в том, что мы сами живем в третьем измерении и поэтому смотрим на него "изнутри", наш объемный мир мы видим как бы плоским. Звучит парадоксально, но поместите лист бумаги с нарисованной на нем Плосколяндией и всеми ее обитателями точно на уровне глаз — и вы на секунду испытаете трагедию плоскатиков, обреченных жить в двух измерениях, но ощущать лишь одно. Ведь чтобы увидеть фигуру — квадрат ли, круг, им надо хоть немного "выскочить" из своей плоскости. Но это невозможно, и именно поэтому весь мир они воспринимают как одну сплошную "женщину" — прямую линию. Остается лишь обойти фигуру со всех сторон и ощупать ее, но только представители "низших классов" в Плосколяндии могут позволить себе, да и то изредка, столь вульгарное поведение. "Лучше плохо видеть, чем хорошо щупать!" — одна из первых заповедей воспитанного человека в этой стране.

В предисловии ко второму изданию своей книги Эдвин Эбботт отверг обвинения в женоненавистничестве, хотя и согласился с критиками, что он обрек плоскатиков на ужасную жизнь. Однако, заявил он, плосколяндцы обладают третьим измерением, но только оно вне их восприятия — ведь их мир одной толщины.

9

Так не обладаем ли и мы в зачаточной форме четвертым измерением, несмотря на то что даже третье, не освоено еще нами полностью?

Вместо ответа на этот вопрос — несколько совсем уж поразительных фактов, связанных с пространствами более чем четырех измерений.

Помните спор Ньютона и Грегори о тринадцати шарах, касающихся четырнадцатого? Сколько таких целующихся гипершаров может быть в четырехмерном пространстве? Оказывается, 24. А в пространствах пяти, шести, семи, восьми измерений соответственно 40, 72, 126 и 240. Последнее число было найдено в конце прошлого века русскими математиками А. Н. Коркиным и Е. И. Золотаревым и уже известным нам англичанином Форольдом Госсетом.

Но это не самое удивительное в парадоксах многомерности. Вот еще один и последний. Куб вместит в себя по диагонали квадрат, площадь которого больше площади одной его грани. В четырехмерный куб впишется обычный куб, объем которого больше объема одной гиперповерхности гиперкуба. А в n-мерный куб с ребром в один миллиметр войдет океанский корабль и весь наш трехмерный мир, если только п достигнет нужной величины.

Попытайтесь представить себе эти непредставимые вещи — и вы услышите музыку сфер, о которой, собственно, и шла речь в этой главе.

Математика — это большой город, чьи предместья не перестают разрастаться, в то время как центр периодически перестраивается, следуя каждый раз все более ясному плану и стремясь к все более и более величественному расположению, в то время как... старые кварталы с их лабиринтом переулков сносятся для того, чтобы проложить к окраине улицы все более прямые, все более широкие и удобные...

Никола Бурбаки

II. Мебиусиана

Геометрия есть познание всего сущего.

Платон

"Униформа, по местам! Маэстро, туш!" — на арене фокусник. Его инструментарий прост до крайности — горизонтальная перекладина на двух стойках, в которую вбито несколько гвоздей, и на каждом из них висит по длинной яркой ленте. Все самое простое и настоящее — любой желающий волен убедиться в этом собственноручно. Маг закуривает сигарету и горящим концом дотрагивается до первой ленты. Пламя бежит вдоль нарисованной посередине ленты дорожки, вызывая восхищение малышей. Но вот огненное кольцо замкнулось — и тут уж крик удивления вырывается у взрослых: вместо ожидавшихся двух тонких лент появляется одна длинная. Прикосновение сигареты к другой ленте — снова взрыв детского восторга и за ним озадаченное молчание взрослых: теперь перед ними две ленты, продетые одна в другую. Еще одна огненная дорожка — и лента делает еще один неожиданный вольт: теперь она завязывается узлом.

Детская радость понятна — им неведомо, что на свете бывают химики и что они придумали калиевую селитру. Но и недоумение родителей тоже идет от незнания — топологии вообще и одной из ее излюбленных игрушек, "листа Мёбиуса", в частности.

А игрушка эта полюбилась математикам, и не им одним. У входа в Музей истории и техники в Вашингтоне медленно вращается на пьедестале стальная лента, закрученная на полвитка. В 1967 году, когда в Бразилии состоялся международный математический конгресс, его устроители выпустили памятную марку достоинством в пять сентаво. На ней была изображена все та же лента. И монумент высотой более чем в два метра, и крохотная марка — своеобразные памятники немецкому математику и астроному Августу Фердинанду Мёбиусу, профессору Лейпцигского университета.