Выбрать главу

А какие они могут быть? Первое, что приходит в голову, — правильная четырехугольная квадратная мозаика, порождение ограниченности нашей нынешней строительной эстетики, преследующая нас дома и на улице. Какие еще мозаики могут встретиться нам в этом мире? "Треугольная", — скажете вы, и будете правы: равносторонний треугольник заполнит собою всю плоскость. Двуугольных фигур не бывает, и потому следующий претендент на роль мозаичного кирпича...?

"Правильный пятиугольник!" — возможно, скажете вы, и ошибетесь!

Правильные пятиугольники не смогут встретиться в одной вершине, втроем они не сомкнутся вокруг нее, а вчетвером налезут друг на друга. Следующий испытуемый — правильный шестиугольник Тут все в порядке: угол между любыми двумя сторонами равен 120 градусам, значит, три их как раз и образуют 360. Такая мозаика — она называется гексагональной — часто встречается в природе. Это пчелиные соты (16) или, например, поверхность жидкости, подвергнутой высокочастотной вибрации, — такую мозаику можно "остановить" с помощью стробоскопа (17).

Но шестиугольная мозаика — последняя наша удача.

Право, на праведную геометрическую жизнь имеют мозаики только трех типов: {4,4}, {3,6} и {6,3}. Это опять символы Шлефли, и они по-прежнему означают, что в вершине мозаики могут сойтись либо четыре четырехугольника, либо шесть треугольников, либо, наконец, три шестиугольника — и никаких иных правильных многоугольников. Все эти мозаики, переходящие благодаря воображению художника одна в другую, вы увидите на гравюре Эсхера "Метаморфозы. II".

Две последние мозаики очень похожи друг на друга, хотя внешне у них все вроде бы наоборот: вершины одной служат центрами граней другой (18, 19). Символы их {3,6} и {6,3} совсем не случайно симметричны, и не случайно треугольная и гексагональная мозаики называются двойственными. Про квадратную же мозаику {4,4} приходится сказать, что она двойственна сама себе.

"Искусство орнамента содержит в неявном виде наиболее древнюю часть известной нам высшей математики", — пишет в своей прекрасной книге "Симметрия" Герман Вейль. Его высказывание ни в явном, ни в неявном виде не содержит гиперболы: среди декоративных узоров древности, главным образом в египетских орнаментах, дошедших до нас, содержатся все возможные виды симметричного расположения на плоскости любых фигур, а таких видов, оказывается, всего семнадцать. "Вряд ли возможно переоценить глубину геометрического воображения и изобретательность, запечатленные в этих узорах, — продолжает Вейль. — Их построение далеко не тривиально в математическом отношении... 17 видов симметрии, в неявном виде известных еще египетским ремесленникам, исчерпывают все возможные случаи. Довольно странно, что доказательство этого факта было дано лишь в 1924 г. Д. Пойя".

Еще более, пожалуй, странно, что такой крупный специалист, как Герман Вейль, тут ошибается: все эти семнадцать расположений были найдены известным русским ученым Евграфом Степановичем Федоровым и описаны в его работе "Симметрия на плоскости", изданной в Санкт-Петербурге в 1891 году. Впрочем, проблема эта интересовала многих ученых. Шестнадцать из семнадцати групп указал француз Камилл Жордан в "Мемуаре о группах движения" в 1869 году, тринадцать — немец Леонгард Зонке спустя еще пять лет. И, надо сказать, было из-за чего тратить время и бумагу. Речь шла не просто о математических курьезах — создавался подход к пониманию строения кристаллов, "каменных цветов", удивительных созданий Природы.

16

Первое разумное суждение о том, в чем загадка правильной формы кристаллов, было высказано, видимо, Иоганном Кеплером в трактате "О шестиугольном снеге". Оно относится к снежинкам. Почему они всегда шести-лучевые или шестиугольные? — спрашивал он себя. И пришел к гениальному для тех времен выводу: потому, что невидимые капельки водяного пара шарообразны и на холоде приклеиваются друг к другу таким образом, что каждая сцепляется с двенадцатью другими, "подобно зернам граната". Это было в начале XVII века и никто еще не сумел заглянуть внутрь вещества, и даже Ньютон еще не затеял своего спора с Грегори о целующихся сферах.

"Чтобы познать невидимое, смотри внимательно на видимое" — сказано в одной древней книге. сознательно или подсознательно этому принципу следовали все ученые, которым предстояло заложить фундамент новой науки — кристаллографии. Французский минералог Рене Жюст Гаюи однажды случайно уронил кристалл известкового шпата. Подобрав кусочки, он увидел, что они в точности повторяют форму разбившегося кристалла. Заинтригованный, он стал один за другим разбивать кристаллы из своей огромной коллекции и, как писал впоследствии его биограф, "продолжая трудиться на этом поприще, сделался основателем кристаллографии".