Выбрать главу

Другой аналог Платоновых тел — снова наш старый зйакомый гиперкуб, или "тессаракт", или "измерительный политоп". Как куб можно получить, перемещая квадрат по третьему измерению, так и сверхкуб образуется от движения обычного куба вдоль четвертого измерения. В его вершине назначают себе рандеву три обычных куба, а потому его символ {4,3,3}.

Что же касается остальных четырех правильных политопов, то их представить себе еще сложнее. И в самом деле, попробуйте вообразить фигуру, в каждой вершине которой встречаются четыре и даже пять тетраэдров — {3,3,4} и {3,3,5} или три додекаэдра — {5,3,3}. Внимательный глаз обнаружит, глядя на символы Шлефли, что первый из этих политопов взаимен гиперкубу, два последних — друг другу, а симплекс, как и слагающие его тетраэдры, обойден по части взаимности: у него тут полное самообслуживание. Впрочем, эти соображения куда меньше помогут вообразить облик политопов, чем фотографии моделей двух из них — правильного 120-ячейника, имеющего символ Шлефли {5,3,3}, и взаимного ему правильного 600-ячейника с символом, естественно, {3,3,5} (30, 31). Модели эти представляют собой трехмерные фоекции четырехмерных тел и вместе с тем — чудо ювелирной точности и геометрической интуиции. На выставке "Столетие прогресса" в Чикаго они постоянно собирали вокруг себя восхищенных посетителей. Сделал их Поль Дончиян, армянин, родившийся в Америке, ?го прадед был придворным золотых дел мастером у турецкого султана, и среди других его многочисленных родственников в разных странах Востока многие тоже мыли умелыми ремесленниками. Сам Поль Дончиян до тридцати лет управлял завещанной отцом ковровой фабрикой, пока вдруг ему не начали сниться сны пророческого характера. Но Дончиян не сделался ни предсказателем, ни мистиком. Он решил изучить четвертое изменение, поскольку именно оттуда, по распространенному среди спиритов убеждению, и вещали духи. Задача была: свести все вопросы к самым простым, которые смог бы понять любой человек, не имеющий, как и он сам, никакого математического образования.

"Как геометр, напрягший все старанья... таков был я" — в последних строфах, подводя итог своему гигантскому труду, Данте Алигьери этим сравнением решил дать читателю почувствовать, как много сил, воображения и знаний потребовала от него "Божественная комедия". Известно — это подметил еще Галилей, а снова вернулся к этому вопросу П. А. Флоренский в книге "Мнимости в геометрии", вышедшей в 1921 году, — что геометрия Дантова ада — неевклидова. Но она все-таки трехмерная!

Чтобы вторгнуться в четвертое измерение наиболее ощутимым образом, Поль Дончиян стал делать модели четырехмерных тел. Точнее, он спаивал из тонких проволочек объемные проекции этих тел в наше, третье измерение. Видом в плане в профиле ему служили чертежи, полученные геометрами, — например, тот, что создал голландский математик Ван Осе (32). И. Дончиян, как опытный строитель, воссоздавал по ним объемные фигуры. Он не стремился покрывать грани каким-либо материалом — ведь тогда ребра стали бы видимыми только для существ из четвертого измерения. Его модели — это "скелеты" фигур, то, что Леонардо да Винчи на своих рисунках к книге Луки Пачоли обозначил латинским словом "вакуус" — пустой, полый.

"Соединяя части фигуры между собой, приходится постоянно сверяться с известными проекциями на плоскость, но в то же время не забывать о здравом смысле, — писал о своей работе сам П. Дончиян. — К счастью, модели обладают тем, что в технике называется "защитой от дурака": если допущена ошибка, то она сразу видна и дальнейшая работа становится невозможной. Зато последняя операция — соединение друг с другом внешних и внутренних секций — таит в себе нечто от того волнения, что испытывают две группы рабочих, пробивающих туннель с двух разных сторон горы, когда они, наконец, встречаются и видят, что рыли точно по одной прямой".

Но минуты восторга были редкими, а работа требовала воображения, необычайного терпения и кропотливого, тонкого труда. Зато и результаты ее были намного более впечатляющими, чем даже фотографии получившихся моделей, — ведь как ни размести камеру, все равно какие-то из многочисленных ребер обязательно перекроют друг друга.