Выбрать главу

РИС. 1

Сомнения касательно неевклидовой геометрии не рассеялись, даже когда распространились идеи диссертации «О гипотезах, лежащих в основе геометрии», написанной Бернхардом Риманом (1826-1866). В 1854 году он прочитал ее 80-летнему Гауссу, который не скрыл своего энтузиазма в отношении услышанного, однако опубликована эта работа была лишь после его смерти. Основываясь на исследованиях Гаусса в области дифференциальной геометрии, Риман предположил, что в каждом пространстве может быть определена различная форма измерения расстояния, так что прямая в этом пространстве (которая по определению является «самым коротким путем между двумя точками») не совпадает с имеющимися у нас представлениями о ней. Итоговая особенная кривая, так называемая геодезическая, будет играть в этом пространстве роль, которую прямая линия играет в евклидовой геометрии. Согласно Риману, для евклидова пространства характерна постоянная нулевая кривизна, где есть единственная параллельная прямая (см. рисунок 2 [1]). Но если изменить значение кривизны, мы получим другой тип пространства, который окажется моделью неевклидовой геометрии. Если кривизна отрицательная, мы получим гиперболическую геометрию Гаусса — Бойяи — Лобачевского, где через точку, не лежащую на прямой, проходит более одной параллельной ей прямой [2]. И наоборот, если кривизна положительная, мы получим эллиптическую геометрию, в которой нет параллельных прямых [3].

РИС. 2

Риман помог истолковать сферу в качестве модели эллиптической геометрии, а следовательно — неевклидовой геометрии, в которой аксиома параллельных прямых ложная, в том смысле, что нет параллельных прямых (как, допустим, в проективной геометрии). В сфере роль прямых берут на себя наибольшие круги. То есть если мы назовем прямыми наибольшие круги, то получим евклидову модель эллиптической геометрии.

Два любых наибольших круга всегда пересекаются. Это случай меридианов Земли, которые всегда пересекаются на полюсах. Поскольку аксиома параллельных прямых не выполняется, сумма углов треугольника не составляет 180°, что показано на сферическом треугольнике на рисунке 3, углы которого в сумме дают 230°. Однако локально, в небольшом масштабе, евклидова геометрия, похоже, выполняется (см. рисунок 4, сумма углов треугольника составляет 180°). Эти открытия позволили Риману рассматривать проективную плоскость в контексте сферической геометрии.

Так что неевклидовы геометрические модели, извлеченные на свет математиками XIX века, только вернули данный вопрос в рамки евклидовой геометрии. Если последняя раньше считалась единственно справедливой, теперь же странные неевклидовы геометрии рассматривались наравне с евклидовой геометрией (которая оказывалась их особым случаем), и возникал правомерный вопрос: в чем же справедливость евклидовой геометрии? Можно ли с уверенностью утверждать, что она не содержит никаких противоречий?

Важнейшим следствием из признания неевклидовых геометрий была необходимость рассмотреть проблему справедливости геометрии и всей математики с точки зрения оснований. До тех пор связность евклидовой геометрии обеспечивало то, что она соответствовала физическому пространству, в котором нет противоречий. Кроме интересных результатов, количество которых постоянно возрастало, внимание также привлекали и основополагающие вопросы. Аксиоматический подход последней трети XIX века, во главе которого стояли Мориц Паш (1843-1930) и Джузеппе Пеано (1858-1930), обозначил их особенно остро, и только Гильберт смог дать определенный ответ. Но прежде требовалось найти подходящую аксиоматику евклидовой геометрии, которая закрыла бы постепенно открывающиеся логические бреши.

АКСИОМАТИЧЕСКИЙ ПОДХОД ГИЛЬБЕРТА

Как это было с теорией инвариантов, настал день, когда Гильберт устал и оставил теорию чисел, переключившись на основы геометрии. Никто не ожидал такого, пусть даже он и вел два курса по этому предмету в Кёнигсберге. Эта новость застала врасплох всех его новых коллег по Гёттингену. Однако в своем «Отчете о числах» Гильберт подчеркивал, что современная математика развивается под знаком числа, и потому призывал к арифметизации геометрии, ориентированной на логический анализ последней. В этом угадываются зачатки его знаменитых Grundlagen der Geometrie («Основания геометрии»), публикация которых в 1899 году была приурочена к открытию в Гёттингене статуи Гаусса и Вебера в память об изобретении ими телеграфа. Эта работа сразу же обозначила новую парадигму исследования оснований и аксиоматическую практику в XX веке, как «Начала» за несколько веков до этого.