Выбрать главу

Фройнд напоминает нам, что по сложившейся традиции физики скептически относились к высшим измерениям потому, что их нельзя измерить, вдобавок у них нет конкретного применения. Но в настоящее время в среде учёных растёт понимание того, что любая трёхмерная теория «слишком ограничена» для описания сил, управляющих нашей Вселенной.

Как подчёркивает Фройнд, лейтмотивом физики последнего десятилетия стало то, что законы природы формулируются проще и яснее, когда они выражены в высших измерениях, т. е. в тех измерениях, в которых они действуют. Для законов света и гравитации находится естественное выражение, если рассматривать их в многомерном пространственно-временном континууме. Главное в объединении законов природы — увеличивать количество измерений пространства и времени до тех пор, пока все силы не будут объединены в рамках одного теоретического подхода. В высших измерениях нам хватает «места» для объединения всех известных физических сил.

Объясняя, почему высшие измерения завладели воображением учёных, Фройнд прибегает к следующей аналогии: «Представьте себе гепарда — прекрасное животное с гладкими, обтекаемыми формами, одно из самых быстрых на Земле, свободно передвигающееся по африканским саваннам. В своей естественной среде обитания это великолепное животное, практически шедевр природы, превосходит в скорости и грациозности всех прочих». И продолжает:

А теперь представьте, что гепарда поймали и посадили в тесную клетку в зоопарке. Он утратил присущую ему грацию и красоту, его выставили напоказ, чтобы развлечь нас. Мы видим лишь сломленный дух гепарда в клетке, а не силу и элегантность, которыми он обладал прежде. Этого гепарда можно сравнить с законами физики, прекрасными в их естественной среде. А естественная среда обитания законов физики — многомерное пространство-время. Но оценить законы физики количественно мы можем лишь в том случае, если они нарушены, посажены напоказ в «клетку», т. е. в нашу трёхмерную лабораторию. Этого гепарда мы видим уже лишённым грации и красоты{3}.

На протяжении десятилетий физики гадали, почему четыре силы природы выглядят настолько обособленными, почему у «гепарда в клетке» такой жалкий и сломленный вид. Основная причина, по которой эти четыре силы настолько разнородны, отмечает Фройнд, заключается в том, что мы наблюдали за «гепардом в клетке». Наши трёхмерные лаборатории — стерильные клетки зоопарка для законов физики. Формулируя эти же законы в многомерном пространстве-времени, их естественной среде обитания, мы видим их истинное великолепие и силу, законы становятся простыми и могущественными. Революция, захлестнувшая физику в настоящее время, — это осознание того, что естественная среда обитания нашего «гепарда» — гиперпространство.

Для того чтобы показать, каким образом введение высшего измерения способствует упрощению, представим себе, как велись масштабные войны во времена Древнего Рима. Великие римские войны зачастую разворачивались на множестве небольших полей и неизменно сопровождались невероятной путаницей, на противников со всех сторон сыпались разные слухи и дезинформация. Когда бои велись на нескольких фронтах, римские военачальники нередко действовали вслепую. Рим чаще побеждал в этих битвах за счёт грубой силы, а не элегантной стратегии. Вот почему одним из первых принципов военного дела стал захват возвышенностей, высот, т. е. переход вверх, в третье измерение, над двумерным полем боя. Для человека, занимающего точку обзора на высоком холме, откуда открывалась панорама поля боя, хаос войны выглядел гораздо менее катастрофично. Иначе говоря, наблюдаемая из третьего измерения (т. е. с вершины холма) неразбериха на полях сражений выстраивается в единую связную картину.

Ещё одно применение того же принципа, согласно которому природа, выраженная в высших измерениях, упрощается, занимает центральное место в специальной теории относительности Эйнштейна. Он обнаружил, что время является четвёртым измерением, и продемонстрировал, что пространство и время легко объединить в теории четырёх измерений. Это, в свою очередь, неизбежно повлекло за собой объединение всех физических величин, определяемых пространством и временем, например материи и энергии. Затем Эйнштейн нашёл точное математическое выражение этого единства материи и энергии: Е = mc² — вероятно, самую известную из всех научных формул.[2]

вернуться

3

Питер Фройнд, в интервью с автором, 1990 г.