Выбрать главу

Непосредственным доказательством вывода Кельвина являлись следующие заключения. Согласно положениям молекулярно-кинетической теории, температура — показатель суммарной кинетической энергии хаотично движущихся молекул, следовательно, в случае приближения степени охлаждения тела к абсолютному нулю, т. е. к -273,16° С, неуклонно замедляется броуновское движение.

Поскольку полную остановку теплового движения и отсутствие всякой энергии в системе при полной ее изоляции от окружающего пространства обеспечить невозможно (т. к. исходя из принципа теплового равновесия, системе вновь передавалась бы энергия, проще говоря, она бы неуклонно «отогревалась»), то и достижение абсолютного нуля невозможно.

5-й постулат Евклида

Знания основ геометрии стали необходимы человечеству по мере развития хозяйственных отношений, сопровождавшихся разделением земельных угодий и строительством различных сооружений. Зародившаяся как чисто прикладная наука, геометрия постепенно приняла характер системы знаний, опирающейся на логические доказательства, а потому отлично подходившей для тренировки ума. Именно по этой причине древнегреческие мыслители считали обязательным этапом овладения философской мудростью постижение геометрического доказательного метода.

Первая обоснованная глобальная основа геометрических знаний была создана древнегреческим мыслителем Евклидом в III в. до н. э. Его знаменитые «Начала», включавшие 13 книг, стали первым учебным пособием по теоретической геометрии. Основа «Начал» — это 5 недоказуемых постулатов и 8 аксиом, на основании которых Евклид и построил доказательства теорем. Последующие две тысячи лет развития человеческой мысли и постепенной перестройки систем научного знания не поколебали основ, заложенных Евклидом.

Самым спорным в смысле недоказуемости был 5-ый постулат, в котором утверждалось, что через точку на плоскости, лежащую вне прямой на этой плоскости, можно провести только одну прямую, параллельную данной. Собственно говоря, именно этот постулат и определял существование того пространства, в котором «работала» евклидова геометрия. Большинство античных геометров считали этот постулат одной из теорем, «случайно» оказавшейся недоказанной.

«Камнем преткновения» этого постулата было само евклидово определение параллельности прямых, опиравшееся на равенство суммы двух односторонних углов, образованных пересечением двух параллельных прямых третьей, 180 градусам. Первая попытка придать 5-му постулату статус теоремы была предпринята греческим геометром Посидонием, предложившим считать параллельной прямой множество всех точек плоскости, находящихся на равном расстоянии от данной прямой. Однако доказать это утверждение было невозможно, и вместо теоремы получился новый постулат.

5-й постулат Евклида можно изобразить графически

Доказательства прочих древнегреческих математиков, как, впрочем, и средневековых (того же ибн Корра и О. Хайама), сводились в конечном итоге к появлению новых постулатов, доказываемых с учетом разного рода допущений.

Очень близко к нахождению доказательства 5-го постулата подошел французский математик А. Лежандр. Ему удалось доказать, что сумма углов в треугольнике не может быть больше или меньше числа π, а стало быть, она равна π. Опираясь на допущение, что данная прямая проходит через точку внутри острого угла, он доказывал единственность параллельной ей прямой, принципиально повторяя ошибку своих предшественников.

К началу XIX в. стали появляться идеи создания неевклидовой геометрии. Впервые описание принципиально новой, не зависящей от 5-го постулата геометрии привел в «Приложении» к книге отца венгерский военный инженер Я. Бойаи. Однако продолжать развитие своих идей Бойаи не стал, посчитав их изначально ошибочными. Выдающийся немецкий математик К. Гаусс также занимался исследованиями в области «новой» геометрии, однако фундаментальной системы ему создать не удалось.

Приоритет в создании неевклидовой геометрии принадлежит отечественному математику, адъюнкт-профессору Казанского университета Н. И. Лобачевскому. Впервые ему удалось описать свойства реального пространства, показав, что евклидова геометрия «работает» лишь в частном случае его системы.

Начав доказывать 5-ый постулат, он, как и сотни других геометров, не нашел решения. Нетрадиционное мышление подсказало ему другой путь — отказ от представления, что сумма углов в треугольнике всегда равна 180 градусам. Пойдя по пути доказательства от противного, он постепенно пришел к созданию новой геометрии, в которой 5-ый постулат принял более общее звучание. Отныне допускалось существование нескольких параллельных данной прямых, проходящих через точку вне данной прямой.