Выбрать главу

Радужная оболочка. Радужная оболочка пигментирована, в ней встречается широкий набор цветов. Окрашенный пигмент создает «цвет глаз личности», представляющий особый интерес для поэтов, влюбленных и генетиков. Однако он меньше интересует нас в связи с функциями глаза. Дело не в том, каков цвет радужки, а в том, что она должна быть достаточно светонепроницаемой, чтобы служить эффективной преградой перед хрусталиком. Глаза, лишенные пигмента (альбинизм), плохо приспособлены к яркому свету.

Иногда думают, что изменения размера зрачка являются важным механизмом, позволяющим глазу эффективно работать в широком диапазоне интенсивности света. Однако это вряд ли является главной функцией зрачка, так как его окружность изменяется только примерно в отношении 16:1, в то время как глаз работает эффективно в диапазоне яркости порядка 100 000:1. По-видимому, зрачок сокращается для того, чтобы ограничить поток света в центральную и оптически наилучшую часть хрусталика; полное расширение зрачка необходимо для максимального увеличения чувствительности глаза. Сокращение зрачка происходит также при взгляде на близкие предметы, что увеличивает глубину поля для этих предметов.

С точки зрения инженера, любая система, которая корригируется с помощью внешних сигналов (в данном случае таким сигналом является интенсивность света), представляет собой «сервомеханизм». Имеется много сходного в принципе действия хрусталика и термостата в центральном отоплении, который автоматически включает систему, когда температура падает ниже определенного, заранее установленного уровня, и затем выключает ее вновь, когда температура поднимается. (Одним из первых созданных человеком сервомеханизмов является ветряная мельница, которая направлена к ветру и следует за его изменениями с помощью веерообразных крыльев, поворачивающих вершину мельницы посредством передаточного механизма. Более усовершенствованным аппаратом является автоматический пилот, который удерживает самолет на правильном курсе и высоте, улавливая ошибки и посылая корригирующие сигналы, чтобы управлять плоскостями машины.)

Вернемся к термостату, чувствительному к изменениям температуры в центральной отопительной системе. Представьте себе, что границы между низким уровнем температуры, который включает установку, и высоким, который ее отключает, — очень близки. Как только установка включилась, температура поднимется достаточно высоко, чтобы включить ее вновь. Таким образом, отопительная система будет быстро включаться и выключаться, пока в ней что-нибудь не сломается. Регистрируя частоту включения и выключения установки, а также амплитуду колебаний температуры, инженер может многое сказать о системе. На основе подобных представлений был проделан ряд изящных экспериментов, чтобы выяснить, как работает система сервоконтроля радужки».

Радужная оболочка может осуществлять интенсивные сокращения, направляя узкий пучок света внутрь глаза, так чтобы луч проходил по краю радужки (рис. 4, 4).

Рис. 4, 4. Изменения величины зрачка при сокращениях радужной оболочки под влиянием луча света. Когда зрачок несколько расширяется, на сетчатку попадает больше света, что и является сигналом для уменьшения диаметра зрачка. Однако, когда он несколько уменьшается, на сетчатку попадает меньше света, что служит сигналом для расширения зрачка. Таким образом возникают колебания. Частота и амплитуда колебаний диаметра зрачка характеризуют систему, контролирующую работу радужной оболочки, которая может быть описана в терминах теории сервомеханизмов.

Когда радужка несколько смыкается, луч частично перекрывается, и тогда сетчатка получает меньше света. Однако это является для радужной оболочки сигналом, чтобы раскрыться. Как только зрачок расширится, сетчатка получит больше света — и тогда радужка начнет закрываться, пока не получит вновь противоположный сигнал. Таким образом, происходят колебания в обе стороны. Измеряя частоту и амплитуду колебаний радужной оболочки, можно многое узнать о контролирующей ее нервной сервосистеме.

Зрачок. Он, разумеется, не имеет структуры. Это — отверстие, образованное радужной оболочкой, через которое свет проходит к хрусталику, а затем к сетчатке уже в качестве изображения. Человеческий зрачок круглый, однако существуют зрачки разнообразной формы, причем круглая форма принадлежит к числу довольно редких. По неизвестной причине глаза животных, ведущих ночной образ жизни, имеют щелевидные зрачки, что особенно явно у кошки.

Зрачок кажется черным, и мы не можем посмотреть сквозь него в глаза другого человека. Это требует некоторых пояснений, поскольку сетчатка не черного, а розового цвета. В самом деле, весьма любопытно, что, хотя мы видим посредством зрачка, мы не можем заглянуть сквозь него в глаза другого человека. Это происходит потому, что хрусталик в глазах другого человека фокусирует свет, исходящий из любого места, на определенную область сетчатки, так что наблюдающий глаз не дает возможности свету попасть на ту часть сетчатки, которую глаз должен был бы увидеть (рис. 4, 3).

Рис. 4, 3. Глаз а не может посмотреть в глаз Ь. Наш собственный глаз является препятствием этому, мешая свету попадать на ту часть сетчатки, которая может формировать изображение.

Гельмгольц изобрел простое устройство (офтальмоскоп) для наблюдения за глазом другого лица; его секрет в том, что луч света направляется вдоль траектории взора наблюдателя (рис. 4, 6).

Рис. 4, 6. Принцип устройства офтальмоскопа, изобретенного Гельмгольцем. Свет достигает исследуемого глаза, отражаясь от стекла, покрытого с одной стороны тонким слоем амальгамы, через которое наблюдатель видит внутреннюю часть глаза. (Фактически он может смотреть поверх яркого луча света, направленного в глаз с помощью маленькой призмы, что устраняет потери четкости изображения, возникающие из-за стекла.)

Если смотреть в глаз с помощью этого прибора, зрачок более не выглядит черным, и можно видеть мелкие детали живой сетчатки, кровеносные сосуды на ее поверхности, которые кажутся большим красным деревом с многими ветвями (рис. 4, 5).

Рис. 4, 5. Так выглядел бы глаз, если бы мы смогли в него заглянуть. Эта фотография сделана с помощью офтальмоскопа. На ней видно желтое пятно, фовеа, сетчаточные кровеносные сосуды, через которые мы смотрим на мир, и слепое пятно, откуда сосуды и нервы выходят из глаза.

ДВИЖЕНИЯ ГЛАЗ