Выбрать главу

This book is divided into three parts. Part I is entitled “The Fat-Cholesterol Hypothesis” and describes how we came to believe that heart disease is caused by the effect of dietary fat and particularly saturated fat on the cholesterol in our blood. It evaluates the evidence to support that hypothesis. Part II is entitled “The Carbohydrate Hypothesis.” It describes the history of the carbohydrate hypothesis of chronic disease, beginning in the nineteenth century. It then discusses in some detail the science that has evolved since the 1960s to support this hypothesis, and how this evidence was interpreted once public-health authorities established the fat-cholesterol hypothesis as conventional wisdom. Part II ends with the suggestion, which is widely accepted, that those factors of diet and lifestyle that cause us to fatten excessively are also the primary environmental factors in the cause of all of the chronic diseases of civilization. Part III, entitled “Obesity and the Regulation of Weight,” discusses the competing hypotheses of how and why we fatten. It addresses whether or not the conventional wisdom that we get fat because we consume more calories than we expend—i.e., by overeating and sedentary behavior—can explain any of the observations about obesity, whether societal or individual. It then discusses the alternative hypothesis: that obesity is caused by the quality of the calories, rather than the quantity, and specifically by the effect of refined and easily digestible carbohydrates on the hormonal regulation of fat storage and metabolism.

My background is as a journalist with scientific training in college and graduate school. Since 1984, my journalistic endeavors have focused on controversial science and the excruciating difficulties of getting the right answer in any scientific pursuit. More often than not, I have chronicled the misfortunes of researchers who have come upon the wrong answer and found reason, sooner or later, to regret it. I began writing and reporting on public-health and medical issues in the early 1990s, when I realized that the research in these critically important disciplines often failed to live up to the strict standards necessary to establish reliable knowledge. In a series of lengthy articles written for the journal Science, I then developed the approach to the conventional wisdom of public-health recommendations that I applied in this book.

It begins with the obvious question: what is the evidence to support the current beliefs? To answer this question, I find the point in time when the conventional wisdom was still widely considered controversial—the 1970s, for example, in the case of the dietary-fat/cholesterol hypothesis of heart disease, or the 1930s for the overeating hypothesis of obesity. It is during such periods of controversy that researchers will be most meticulous in documenting the evidence to support their positions. I then obtain the journal articles, books, or conference reports cited in support of the competing propositions to see if they were interpreted critically and without bias. And I obtain the references cited by these earlier authors, working ever backward in time, and always asking the same questions: Did the investigators ignore evidence that might have refuted their preferred hypothesis? Did they pay attention to experimental details that might have thrown their preferred interpretation into doubt? I also search for other evidence in the scientific literature that wasn’t included in these discussions but might have shed light on the validity of the competing hypotheses. And, finally, I follow the evidence forward in time from the point at which a consensus was reached to the present, to see whether these competing hypotheses were confirmed or refuted by further research. This process also includes interview with clinical investigators and public-health authorities, those still active in research and those retired, who might point me to research I might have missed or provide further information and details on experimental methods and interpretation of evidence.

Throughout this process, I necessarily made judgments about the quality of the research and about the researchers themselves. I tried to do so using what I consider the fundamental requirement of good science: a relentless honesty in describing precisely what was done in any particular work, and a similar honesty in interpreting the results without distorting them to reflect preconceived opinions or personal preferences. “If science is to progress,” as the Nobel Prize–winning physicist Richard Feynman wrote forty years ago, “what we need is the ability to experiment, honesty in reporting results—the results must be reported without somebody saying what they would like the results to have been—and finally—an important thing—the intelligence to interpret the results. An important point about this intelligence is that it should not be sure ahead of time what must be.” This was the standard to which I held all relevant research and researchers. I hope that I, too, will be judged by the same standard.

Because this book presents an unorthodox hypothesis as worthy of serious consideration, I want to make the reader aware of several additional details. The research for this book included interviews with over 600 clinicians, investigators, and administrators. When necessary, I cite or quote these individuals to add either credibility or a personal recollection to the point under discussion. The appearance of their names in the text, however, does not imply that they agree with all or even part of the thesis set forth in this book. It implies solely that the attribution is accurate and reflects their beliefs about the relevant point in that context and no other.

Lastly, I often refer to articles and reports, for the sake of simplicity and narrative flow, as though they were authored by a single relevant individual, when that is not the case. A more complete list of authors can be found using the notes and bibliography.

Part One

THE FAT-CHOLESTEROL HYPOTHESIS

Men who have excessive faith in their theories or ideas are not only ill prepared for making discoveries; they also make very poor observations. Of necessity, they observe with a preconceived idea, and when they devise an experiment, they can see, in its results, only a confirmation of their theory. In this way they distort observation and often neglect very important facts because they do not further their aim…. But it happens further quite naturally that men who believe too firmly in their theories, do not believe enough in the theories of others. So the dominant idea of these despisers of their fellows is to find others’ theories faulty and to try to contradict them. The difficulty, for science, is still the same.

CLAUDE BERNARD, An Introduction to the Study of Experimental Medicine, 1865

Chapter One

THE EISENHOWER PARADOX

In medicine, we are often confronted with poorly observed and indefinite facts which form actual obstacles to science, in that men always bring them up, saying: it is a fact, it must be accepted.

CLAUDE BERNARD, An Introduction to the Study of Experimental Medicine, 1865

PRESIDENT DWIGHT D. EISENHOWER SUFFERED his first heart attack at the age of sixty-four. It took place in Denver, Colorado, where he kept a second home. It may have started on Friday, September 23, 1955. Eisenhower had spent that morning playing golf and lunched on a hamburger with onions, which gave him what appeared to be indigestion. He was asleep by nine-thirty at night but awoke five hours later with “increasingly severe low substernal nonradiating pain,” as described by Dr. Howard Snyder, his personal physician, who arrived on the scene and injected Eisenhower with two doses of morphine. When it was clear by Saturday afternoon that his condition hadn’t improved, he was taken to the hospital. By midday Sunday, Dr. Paul Dudley White, the world-renowned Harvard cardiologist, had been flown in to consult.