Выбрать главу

Сужающиеся по склону овраги известны и на Земле в районах пустынь и связаны с непосредственным поглощением (впитыванием) воды сухим тёплым грунтом, что не имеет ничего общего с мгновенным образованием тонкого ледяного ложа потока на Марсе. Более близким аналогом могут быть потоки от гейзеров, бьющих в кальдере вулкана Эребус в Антарктиде.

Часто утверждается, что жидкая вода на поверхности Марса немедленно испаряется. Это недоразумение: роль испарения пренебрежимо мала, и её нетрудно оценить. Пусть атмосферное давление в данном районе 8 мбар, тогда температура кипения воды, согласно диаграмме на рис. 5, составляет 4 °C. При температуре воды в ключе, например, 10 °C вода в потоке будет кипеть, постепенно уменьшая своё теплосодержание и остывая. Когда температура упадёт до 4 °C (или до 0 °C при давлении 6,1 мбар), каждый килограмм воды потеряет 6 ккал и кипение прекратится. Чтобы найти, какая доля потока испарится с понижением его температуры до 4 °C, следует эти 6 ккал разделить на теплоту парообразования (в земных условиях это 540 ккал/кг, на Марсе незначительно больше). Расчёт показывает, что в пар превратится всего 1,1 %, то есть сколько-нибудь заметная часть истекающей воды испариться не может, для этого негде взять необходимую теплоту парообразования. Реальные процессы могут быть сложнее, так как на крутых склонах поток несёт с собой значительные массы грунта, что уменьшает его теплосодержание.

Когда дневная температура грунта становится положительной, как это наблюдалось с аппарата «Пасфайндер», потоки способны распространяться на большие расстояния, но их обильность также должна уменьшаться с расстоянием из-за расхода воды на увлажнение песчаного грунта. Заметную роль в протяжённости потоков может играть солёность грунтовой воды Марса, понижающая точку замерзания.

Источником жидкой воды может быть только таяние подпочвенного льда (или вечной мерзлоты). Глубина залегания подпочвенного льда оценивается различно, в среднем от сотни метров до километра, а минимальная оценка глубины — всего несколько сантиметров. Так, в арктической зоне посадки аппарата «Феникс» лёд оказался сразу под слоем пыли (рис. 14). Аппарат исследовал реголит на небольшой глубине. При посадке аппарата струи газа из тормозных двигателей (конусы вверху) сдули слой пыли. Под её тонким слоем находится значительная масса льда, который, в отличие ото льдов низких широт, здесь сохраняется очень долго. Что же касается поясов экваториальных и умеренных широт, выход воды (и, возможно, водяного пара) из глубоких слоёв тающего льда на поверхность неизбежен — куда им ещё деваться. По результатам исследований на аппарате MGS было установлено, что в некоторых районах на глубине менее 500 м есть жидкая вода. На склонах кратеров на рис. 6 и 10 ясно виден выделяющийся чем-то слой глубиной 100–500 м. Можно предположить, что он отличается именно присутствием льда и воды.

В представлениях о Марсе как о «сухой, мёртвой планете» произошёл перелом. Как всегда, появление новых измерительных приборов приводит к ревизии прежних сведений. Но уместно отметить: ещё в конце 1970-х исследователи предполагали, что на Марсе должны существовать частично или полностью промёрзшие, скрытые слоем песка и пыли озёра. На одном из снимков аппарата «Марс Экспресс» видна обширная гладкая равнина (рис. 15). Метеоритные кратеры на её поверхности немногочисленны, что указывает на сравнительно недавнее появление равнины. Верхний окрашенный слой — конечно, песок и пыль, но под ними просматриваются плоские блоки протяжённостью в десятки и даже в сотню километров. Из сравнения с видом ледовых полей Антарктики был сделан предположительный вывод, что это поверхность замёрзшего моря или небольшого океана, возникших в эпоху более мягкого климата Марса. Метеоритные кратеры неглубоки и своей правильной формой отличаются от других ударных кратеров, позволяя предположить, что они образовались в толще льда.

Рис. 15. Аппарат «Марс Экспресс» в 2005 году передал изображение обширной равнины, которая могла быть ледяной поверхностью древнего океана. Плоские блоки неправильной формы, по крытые песком и пылью, выглядят так же, как льдины в антарктических океанах Земли.

Как уже отмечалось, километровые слои льда, воды и пыли образуют северную полярную шапку Марса (рис. 16). В отличие от южной, примесей льда СО2 здесь практически нет. Из-за низких температур таяния льда ожидать не приходится, лёд сублимирует (испаряется, минуя жидкую фазу). Воды в северной полярной шапке сосредоточено много, но всё же намного меньше, чем в подпочвенных льдах. На границе шапки при таянии возникают образования, природа которых не вполне понятна. В появлении жидкой воды полярные шапки, по-видимому, какой-либо роли не играют.

ВОДА НА МАРСЕ СЕГОДНЯ

Появляется всё больше доказательств того, что природа протяжённых тёмных или светлых вытянутых образований на склонах кратеров и возвышенностей Марса связана с ныне существующими источниками жидкой воды, ключами грунтовых вод, возникающими на склонах, и потоками воды, а вовсе не с перемещением больших масс сухого песка (пыли) или с камнепадами. Полученные с орбитальных аппаратов изображения с разрешением до единиц метров позволяют увидеть такие ключи в действии. В верхней части рис. 17 сравниваются два снимка склона кратера, сделанные с интервалом в шесть лет. За это время на склоне появился новый объект, очень похожий на поток или его след, длиной несколько сотен метров. Как будет показано ниже, часто потоки возникают повторно и движутся по старому или новому пути. Интересно, что в некоторых случаях они не обрываются, а заканчиваются чем-то вроде запруды.

Рис. 16. Структура северной полярной шапки включает слои льда и пыли. Диаметр шапки достигает 500 км.

Рис. 17. Рождение нового потока на склоне кратера. Фото MGS.

Рис. 18. Склон кратера с протоками (39°S, 166°W). В нижней части снимка находится бассейн, подобный чашам на рис. 22 и 23, но значительно большего размера. (MGS МОС Release No. MOC2-320. NASA/JPL/MSSS.)

На рис. 18 представлен склон кратера, богатого склоновыми протоками (39°S, 166°W). В нижней части снимка находится чаша, или бассейн, изрезанной формы. Внешняя граница бассейна выделяется светлой окантовкой. Поверхность бассейна по сравнению с примыкающей поверхностью гладкая даже при большом увеличении; возможно, это лёд. В верхней (на снимке) части чаши видны два или три следа, соответствующие многократному понижению уровня поверхности. Сток воды через края бассейна образовал второй, внешний контур (в нижней части снимка). Два таких же, но меньших по размерам контура можно заметить в левой части снимка. Источников жидкости, пополняющих бассейн, видно несколько. Вероятно, главный источник находится справа над чашей. Это вытянутое образование с шестью направленными вниз отростками, и, по-видимому, вдоль них стекает вода. Более мелкие структуры того же типа видны слева над бассейном и, вероятно, связаны с наиболее широким протоком вдоль склона. Форма промоин на рис. 18, соответствующая крутому склону, указывает, что поток несёт с собой значительное количество грунта. Горизонтальная ось снимка — около 1500 м. Длина бассейна — около 600 м, а площадь — около 0,3 км2. Никакие песчаные запруды на Марсе не смогли бы удержать столь большие массы воды, даже с учётом втрое более низкой силы тяжести на планете. Но если грунт очень холодный, поступающая вода, впитываясь в морозный грунт, способна быстро создать запруды, чаши из льда и промёрзшего грунта, обладающие определённой прочностью. По существу, это тот же механизм, о котором говорилось выше и который объясняет сужение протоков вдоль склона.