Выбрать главу

case Key of

VK_ESCAPE, VK_F12 : begin // Традиция для DirectDraw

Close; Exit;

end;

VK_LEFT : begin // Клавиша "стрелка влево"

Dec (1ft, 1); // Уменьшаем 1ft

FormPaint (nil); // Перерисовываем экран end;

VK_RIGHT : begin // Клавиша "стрелка вправо"

Inc (1ft, 1); // Увеличиваем 1ft

FormPaint (nil); // Перерисовываем экран

end;

end;

Обратите внимание, что для перерисовки окна метод Refresh не годится, иначе сквозь экран будет проглядывать мелькнувшее окно приложения. Картинка движется с малым шагом с целю убедить вас, что если хоть один пиксел растра не помещается на первичную поверхность, не воспроизводится ничего.

Также наверняка вам бросится в глаза то, что картинка появляется медленно на экране, при ее воспроизведении вы можете увидеть мельтешение черных полос. Пока старайтесь не обращать на это внимания. В будущем мы устраним это - такого не должно быть в наших серьезных проектах.

Сейчас сделайте следующее. Запишите строку, задающую параметры области вывода так:

SetRect (dstRect, 1ft, 100, 1ft + 512, 356);

Картинка выводится растянутой, из чего делаем важный вывод: метод Bit поверхности поддерживает операцию масштабирования. Удобное для нас свойство, им можно пользоваться, чтобы задавать в качестве фона растровое изображение любого размера. Для этого измените ту же строку вот так:

SetRect (dstRect, 0, 0, ClientWidth, ClientHeight);

Теперь код, заполняющий первичную поверхность черным цветом, можно просто удалить. Он не нужен, его выполнение только отнимает драгоценное время.

Плохо в получающемся примере то, что размер растра используется в нем дважды: при задании размеров первичной поверхности и при задании области вывода. Здесь нас ждет хорошая новость: во втором случае можно ничего не указывать, по умолчанию будет использоваться вся поверхность, и строку блиттинга можно записать так:

hRet := FDDSPrimary.Blt (SdstRect, FDDSImage, nil, DDBLT_WAIT, nil);

To есть третий параметр равен nil. Обязательно проверьте это, все должно работать как следует.

С точки зрения оптимизации лучше явно задавать размер копируемой поверхности.

Протестируйте работу программы при переключении и восстановлении и, если картинка пейзажа теряется, скорректируйте код функции RestoreAli.

Я воспользуюсь случаем, чтобы посвятить вас в еще одну важную тему: в любой момент времени мы можем получить информацию обо всех свойствах поверхности, в том числе и о ее размерах. Для этого предназначен метод поверхности GetSurfaceDesc.

Иллюстрацией служит проект каталога Ех09. Код обработчика onPaint формы дополнился локальной переменной ddsd2 типа TDDSurfaceDesc2, перед блиттингом с ней производятся обычные действия (обнуление всех полей и задание размера), используется она с целью хранения информации о параметрах поверхности, для получения которых и вызывается изучаемый метод:

//В ddsd2 занести данные о поверхности

FDDSImage.GetSurfaceDesc (ddsd2);

// Размеры srcRect устанавливаются равными размерам поверхности

SetRect (srcRect, 0, 0, ddsd2.dwWidth, ddsd2.dwHeight);

Сейчас в качестве упражнения рекомендую выполнить следующее задание: создайте простейшую программу просмотра bmp-файлов. После загрузки приложения пользователь выбирает нужный файл с помощью стандартного диалога. Растр выводится на полный экран.

Еще один простой пример по поводу блиттинга - проект каталога Ех10. Здесь экран раскрашивается подобно радуге (рис. 2.2).

Используется растр размером 1024x1, т. е. высотой в один пиксел. Не забывайте, что карты с небольшой видеопамятью не способны создать вторичную поверхность больше первичной. Некоторые читатели не смогут насладиться всей красотой этого примера, но ничего не потеряют, поскольку следующий проект выводит все тот же растр, и должен работать на всех картах.

В проекте каталога Ex11 я напоминаю о другом способе масштабирования растров, обычном для Delphi. При создании вторичной поверхности растровое изображение все также загружается в объект wrkBitmap. Затем создается вспомогательный объект wrkBitmapl, его ширина - 640 пикселов, высота - 1 пиксел. После чего "масштабируется" прежний растр и выводится на канве wrkBitmapi с помощью метода StretchDraw:

wrkBitmapi.Canvas.StretchDraw (Rect (0, 0, wrkBitmapi.Width,

wrkBitmapi.Height), wrkBitmap);

Размеры вторичной поверхности теперь должны опираться на размеры именно второго растра.

Такой способ масштабирования более эффективен. Задайте высоту растра равной 60 пикселам, и радуга должна заполнить экран гораздо быстрее, чем в двух предыдущих способах, поскольку меньше тратится времени при окончательном растяжении вторичной поверхности.

Упражнение: сделав wrkBitmapl глобальной переменной, добейтесь уверенного восстановления изображения.

Аналогичный прием со вспомогательным объектом класса TBitmap используется в очередном примере (проекте каталога Ех12), в котором образ загружается из jpg-файла, а при выводе картинка заключается в рамку (рис. 2.3).

В списке uses добавлены модули extctris и jpeg для использования динамически создаваемого объекта image класса Timage, в который будет загружаться jpg-файл :

Image := Timage.Create (nil); // Создаем объект

Image.Picture.LoadFromFile ('..\lake.jpg'); // Загружаем jpg

// Непосредственно Image использовать не сможем

wrkBitmap := TBitmap.Create; // Вспомогательный Bitmap

wrkBitmap.Width := 640; // Размеры - все окно, чтобы не было искажений

wrkBitmap.Height := 480;

// Фон прямоугольника рамки // Рамка обрамляется красным // Толщина карандаша

wrkBitmap.Canvas.Brush.Color := clBlue;

wrkBitmap.Canvas.Pen.Color := clRed;

wrkBitmap.Canvas.Pen.Width := 5;

wrkBitmap.Canvas.Rectangle (150, 100, 490, 380); // Рамка

// Воспроизводим jpg на канве

wrkBitmap.Canvas.Draw (192, 112, Image.Picture.Graphic);

Image.Free; // Image больше не нужен

Канва в примере используется только при подготовке поверхности, посему мы не потеряем в скорости при воспроизведении.

Будьте внимательны, основной фон экрана в рассматриваемом примере - серый, поскольку за нашей картинкой выступает поверхность основного окна. Такое сочетание вывода функциями GDI и командами DirectDraw вообще-то надо избегать, заполняя весь фон вторичной поверхности. Если вы внимательно исследуете содержимое заголовочного файла DirectDraw.pas, то легко сможете обнаружить, что свойства блиттинга гораздо шире изученных нами. Например, поверхность можно вращать при выводе. Удобная возможность, но предоставляется только акселератором, причем далеко не каждым. Поэтому изучить вам это придется самостоятельно. А мы перейдем к другому методу поверхности, осуществляющему блиттинг - методу BitFast. Рассмотрим пример, представленный в проекте каталога Ех13. Картинка загружается из jpg-файла, внеэкранная поверхность должна закрывать собой весь экран:

wrkBitmap. Width := 640; // По размерам совпадает с устанавливаемым wrkBitmap. Height := 480; // экранным режимом

wrkBitmap. Canvas. Brush. Color := clBlack; // Фон экрана установим черным wrkBitmap. Canvas. Rectangle (0, 0, 640, 480); // Закрасим весь экран wrkBitmap. Canvas . Draw (192, 112, Image. Picture. Graphic ) ; // Вывод jpg

Воспроизведение основано на методе BitFast:

hRet := FDDSPrimary. BitFast (0, 0, FDDSImage, nil, DDBLTFAST_WAIT) ;

Первые два аргумента задают координаты (х, у) левого верхнего угла размещаемого блока в принимающей поверхности. Дальше указывается вставляемая поверхность. Предпоследний аргумент - величина типа TRECT - задает вырезаемую из вставляемой поверхности область. Точно так же, как и в случае с методом Bit, желательно явно задавать размеры, даже в случае, когда поверхность вставляется целиком. Последний аргумент определяет условия работы блиттинга. Пока мы задаем одиночное значение. Константа изменилась, но смысл ее использования аналогичен DDBLT_WAIT.