Что делать, если график выглядит перегруженным. Боремся с лапшой
Даже самый понятный тип визуализации данных можно сделать запутанным, добавляя все больше новых рядов данных. Если бесконтрольно увеличивать количество данных на линейном графике, получится «лапша».
Самые частые причины перегруженности:
• Попытка разместить слишком много данных в одном графике
• Неверно выбранный вид визуализации
• Попытка подписать все значения прямо на графике
Что можно сделать?
• Попробовать подобрать более подходящий вид визуализации
• Разделить данные на несколько графиков
• Попробовать сгруппировать часть данных, тем самым уменьшив их количество или улучшив организацию и читаемость. Обычно читаемость повышает создание категории «Прочее»
• Убрать часть данных
• Убрать подписи значений с графика
Вот пример перегруженного графика. Если разделить его на несколько, он становится читабельным и понятным:
А вот пример уменьшения хаоса и добавления читаемости с помощью изменения вида визуализации, группировки значений и избавления от подписей значений:
Сюда черточками можно нанести и сам индекс счастья, но и в таком виде визуализация достаточно наглядна.
– Но будьте осторожны, упрощая и группируя, – говорит Нейтан Яу. В информации могут скрываться важные детали. Нужно понимать задачу, соблюдать баланс и стремиться к объективности.
Если линейный график перегружен, обычно работает только две стратегии:
1. Использование серого цвета для основной массы линий. Эти линии мы оставляем для сохранения контекста или фона. Далее делаем акцент на нескольких, о которых идет речь в нашем сообщении:
В этом случае мы сохраняем общий паттерн снижения уровня безработицы по всем регионам. При этом мы отчетливо видим пик – последствия кризиса 2008 года. И, наконец, делаем акцент на лидере и аутсайдере в 2018 году.
2. Разбить данные на несколько мини-графиков. Важно, что все они должны быть в одной размерности для того, чтобы сохранить адекватность сравнения между ними.
Вот прекрасный пример от Нью-Йорк Таймс об эффективности различных методов контрацепции:
Если вам важно сохранить наглядный показ всех данных, но вы не хотите превращать график в лапшу, серии мини-графиков – практически единственный адекватный вариант визуализации.
Еще раз об алгоритме выбора графиков
Итак, выбор типа и конкретного вида визуализации данных – ключевой этап в донесении вашего сообщения графически. Для этого нужно качественно провести анализ данных. Затем получить информацию от экспертов о том, как именно следует интерпретировать эти данные. По результатам этого процесса вы сформулируете несколько сообщений, которые хотите донести. Я рекомендую отталкиваться от представленного ранее списка объединенных в группы видов визуализации. В 80 % случаев эффективно работает первый вид визуализации в каждой группе. Когда ваше сообщение попадает сразу в несколько категорий, важно понять, какой вид взаимоотношений между данными как вывод наиболее важен.
Если вы не уверены в наглядности, попробуйте показать ваш график друзьям/родственникам и узнать их мнение. Не объясняйте им заранее, что именно они должны увидеть.
Существуют более подробные помощники по выбору графиков в виде древовидных схем со сценариями – так называемые чарт-чузеры. Они интересны для ознакомления, но пользоваться ими не рекомендуется:
Чарт-чузер от Эндрю Абеллы
В конечном итоге выбор вида визуализации – творческий процесс. Вы не прокликиваете все подряд графики в Excel и не ищете пример, который покажется подходящим. Вы формулируете, что именно хотите наглядно показать (первым/вторым уровнем). А под это сами подбираете вид графика с особенностями его оформления. Это может включать стадию рисования эскизов на бумаге. Зарисовки сразу наглядно показывают, читабельно ваше сообщение или нет. Я не видел ни одного человека, которому бы помогли чарт-чузеры, или чтобы кто-то реально ими пользовался.
Главное в шестой главе
• Вид визуализации должен подходить вашему сообщению
• Если график выглядит перегруженным, можно уменьшить количество данных, разделить их на два-три графика или сгруппировать категории
• Четкого алгоритма выбора графика нет, но есть ориентиры и понимание принципов