В реальном же мире любого атомного вещества никакой электрон никогда не «зависает» над атомом, лишаясь своей кинетической энергии. Даже тогда, когда возбуждённый каким-нибудь фотоном, он уходит от своего протона «вверх» по эллиптической орбите, то там, на самом «кончике» этой орбиты, он: или снова возвращается к протону, не теряя слишком сильно своей скорости на этом «кончике», но лишь поворачивая вектор своей скорости из радиального в касательный и затем – снова в (обратный) радиальный; либо тогда, когда «высоко» подброшенный, он этим «высоким» кончиком эллипса вторгается в поле другого атома, отрываясь от своего бывшего и падая в поле уже другого атома. Но для того чтобы мы увидели действительно свободный (освободившийся) от атома электрон, этот последний должен улететь не только от данного атома, но от поверхности какого-нибудь, скажем, металла достаточно далеко. Но даже там, будучи уже свободным, он, «задумав», например, снова вернуться в атомную решётку, из которой только что вылетел, никогда не теряет своей поступательной скорости, но «медленно» меняя скорость с радиального направления на тангенциальное и далее – снова на обратное радиальное, сохраняет свою кинетическую энергию на этом повороте на достаточно приличном её уровне.
Внутри же металла свободные (освободившиеся от какого-то данного атома) электроны вообще никогда не могут иметь низкой скорости, а следовательно, низкой кинетической энергии. То есть внутри металла, например, они всегда могут вылететь из атома и влететь в пределы другого с приличными скоростями, не сильно отличающимися от их скоростей на нижних атомных орбитах. Так может происходить только потому, что атомы складываются в атомную решётку не на уровне каких-нибудь тысячных орбит, где вылетающий электрон мог бы действительно заметно потерять свою скорость и кинетическую энергию, но соединяются на уровне уже единичных или, в худшем случае, на уровне номеров орбит, не превышающих десятка.
Мы только что говорили фактически о тех электронах, которые вырываются, например, из металла подогретого катода любой лампы накаливания. В старых ламповых приборах (телевизорах или радиоприёмниках) нити накала ламп всегда светились красным светом. Для чего нити накала (или они же – фактически катоды ламп) подогревались проходящим по ним достаточно большим током накала? Для того, чтобы перевести множество электронов на возбуждённые орбиты. Из теории фотоэффекта мы знаем, что из холодного металла можно выбивать электроны только ультрафиолетовыми фотонами, имеющими высокую энергию порядка энергии ионизации металла из состояния первой орбиты (10–13 эВ). Но в телевизоре мы не применяем никакой ультрафиолет. Но зато сильно подогреваем металл катода лампы, как бы переводя заранее его электроны с нижних уровней на более верхние, когда он может ионизироваться с них уже не ультрафиолетовыми, но фотонами видимого диапазона, и даже не «белыми» или «жёлтыми», но уже «красными», то есть не такими уж и энергичными. Но их энергии уже хватает на то, чтобы выбить электроны – не с нижних орбит (с нижних всё равно не получится), но с «подогретых» верхних. Что и происходило в электронных лампах с подогревающимися катодами. Причём в этих лампах существовала так называемая «сетка». Она располагалась «выше» катода, но ниже ускоряющего анода. На эту сетку подавался отрицательный потенциал по отношению к потенциалу катода, из которого вылетали «подогретые» электроны. И в лампах существовали (как вполне рабочие) такие режимы, когда электроны с катода вылетали, но потом, отталкиваемые отрицательной сеткой, они не прорывались через неё к аноду и, следовательно, не давали никакого анодного тока лампы (где располагалась полезная нагрузка). То есть в этих режимах около катода наблюдалось действительное электронное облако из вылетевших электронов, затем закруглявших свои траектории и затем снова падающих на поверхность металла катода (а эта поверхность всегда удерживает атомные электроны, сохраняя таким образом атомную решётку).