Читается это так: величина (модуль) отрицательной потенциальной энергии падает. Что в переводе на термины нормальной (не сдвинутой «вниз») шкалы означает: потенциальная энергия системы возрастает. И действительно, когда мы поднимаем электрон «выше» над протоном, то мы «заряжаем» систему с помощью работы сторонних сил, «возбуждая» таким образом атом. И поскольку мы затрачиваем силы, то совершаем отрицательную (затратную внешнюю) работу:
работа сторонних сил, обратная положительной (естественной) работе поля протона (когда бы оно притягивало к протону электрон).
И теперь, после того как освежили в памяти физику потенциалов и энергий, принятых в классической электростатике, мы перейдём к тяжёлой теме действительных процессов, происходящих в атоме. Они включают в себя не только статику (и соответствующий ей энергетический путь исследования), но и динамику (кинематику движения электрона), рассматривать которую физики побоялись. Да, мы понимаем физиков. Там были великие трудности. Они были связаны со слишком большими неопределённостями, касающимися действительной механики атома, каковой является не «квантовая механика» физиков, но классическая механика движения реальной частицы в потенциальном поле другой частицы.
Первым из исследователей, кто реально попробовал «на зуб» классическую механику атома, был Нильс Бор. Мы, в своей философии, прекрасно понимаем, в отличие от современных физиков, основную трудность, вставшую стеной на пути первопроходцев ещё задолго до того, когда физики начала 20-го века взялись за исследование атомных процессов. Даже сейчас современные физики не видят эту трудность. Но она фундаментальна. Это эфир. Физики и сейчас, спустя век после тех событий, не знают его. Более того, мы постоянно, чуть ли не в каждой главе Философии, говорим о том, что они боятся знать эфир. В этом – их главная трагедия. Не зная же эфира, невозможно грамотно рассмотреть физику атомных полей, как и физику самих частиц, взаимодействующих между собой в атоме по классическим законам Ньютона.
Тема столь огромна, что на нескольких страницах главы её, конечно же, не удастся рассмотреть грамотно. Но нас опять спасёт то, что в своих оценочных исследованиях мы и не думаем заниматься никакой теорией физики. Теория – это дело профессионалов. Мы же занимаемся лишь философией физики, то есть намечаем некие пути, плохо видимые (а часто – вовсе невидимые) физиками. И что удивительно: не боясь двигаться по этому пути, нам, похоже, удаётся замечать ошибки профессионалов, некоторые из которых можно и нужно называть фундаментальными ошибками.
Итак, начнём с главного закона электростатики – с закона Кулона:
Между двумя точечными зарядами действует сила, прямо пропорциональная произведению зарядов, обратно пропорциональная квадрату расстояния между ними и направленная вдоль прямой, соединяющей заряды. В выражение закона входит электрическая постоянная:
О ней современные физики, похоже, совсем забыли. Но она является необходимым классическим коэффициентом, связывающим (по типу гравитационной постоянной – в законе всемирного тяготения) размерности и порядки величин, входящих в закон. Размерность силы F – Н (ньютон):
Об этой постоянной говорится также в фундаментальной теореме электродинамики – теореме Гаусса.
Поток напряжённости электрического поля Е через любую замкнутую поверхность равен полному электрическому заряду внутри поверхности, делённому на постоянную величину :
где – алгебраическая сумма зарядов, находящихся внутри поверхности.
Здесь говорится о «потоке через поверхность ∆S», размерность которого равна произведению величины Е на площадь поверхности. О каком потоке говорит теорема Гаусса в применении к атомным полям? Она говорит, конечно же, о положительном «заряде» (протоне), излучающем вокруг себя по всей сфере (4π) электрическое поле, представляемое классической электродинамикой в виде потока силовых линий этого поля («поток напряжённости электрического поля Е»).